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Abstract 

It is estimated that 70 to 85 percent of a naval ship's life-cycle cost is determined 
during the concept exploration phase which places an importance in the methodology 
used by the designer to select the concept design. But trade-off studies are guided 
primarily by past experience, rules-of-thumb, and designer preference. This approach is 
ad hoc, not efficient and may not lead to an optimum concept design. Even worse, once 
the designer has a "good" concept design, he has no process or methodology to determine 
whether a better concept design is possible or not. 

A methodology is required to search the design space for an optimal solution based 
on the specified preferences from the customer. But the difficultly is the design space, 
which is non-linear, discontinuous, and bounded by a variety of constraints, goals, and 
thresholds. Then the design process itself is difficult to optimize because of the coupling 
among decomposed engineering disciplines and sub-system interactions. These attributes 
prevent application of mature optimization techniques including Lagrange multipliers, 
steepest ascent methods, linear programming, non-linear programming, and dynamic 
programming. 

To further improve submarine concept exploration, this thesis examines a statistical 
technique called Response Surface Methods (RSM). The purpose of RSM is to lead to an 
understanding of the relationship between the input (factors) and output (response) 
variables, often to further the optimization of the underlying process. The RSM approach 
allows the designers to find a local optimal and examine how the design factors affect the 
response in the region around the generated optimal point. RSM can be applied to 
submarine concept exploration and provide a methodology to: determine the optimal • 
concept design based on customer preference, efficiently perform trade-off studies, 
determine the feasible design space, and the ability to determine in advance if a specified 
concept design is feasible and meets all the customer thresholds and constraints. 

Thesis Supervisor:   Clifford Whitcomb 
Associate Professor of Ocean Engineering 

Thesis Reader: Kevin Otto 
Associate Professor of Mechanical Engineering 
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Chapter 1: Introduction 

A submarine concept design is a difficult and iterative task due to the number of 

physical constraints, engineering design considerations, and customer requirements that 

must be satisfied. Because the number of mathematical equations required for a basic 

concept design is vast, any attempt to optimize the concept design process poses its own 

set of problems. The underlying equations to model a basic concept design are both 

linear and non-linear with continuous and discrete variables. The design process is 

difficult to optimize because of the coupling among decomposed engineering disciplines 

and sub-system interactions. These attributes prevent application of mature gradient- 

based optimization techniques including Lagrange multiplier, steepest ascent methods, 

linear programming, non-linear programming and dynamic programming. Genetic 

algorithms have been investigated [1], but have not proven to be a successful application 

tool. 
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1.1 Concept Design Studies 

First, a designer will be challenged with a set of customer requirements and will 

attempt to produce a feasible and balanced submarine design. The process starts with 

estimates of the of the multiple requirements as the designer proceeds around the "design 

spiral" (see Figure l) where each spoke represents one of the many disciplines and 

engineering requirements that needs to be considered. For instance, the spokes could 

represent the following: customer requirements, volume requirements, initial sizing, 

weight estimates, weight/buoyancy balancing, longitudinal balance, vertical balance, 

equilibrium polygon, propulsion, structures, maneuvering and cost. This philosophy is 

extensively discussed in the open literature, for example Brown [2]. For the first 

iteration, all calculations are entirely estimates. As the spiral of design progresses, 

refinements are made in each of the calculations as the design approaches a balanced 

condition. Once complete, the designer will have produced one balanced concept design. 

«ÄKcT
Effi^ 

Figure 1: Design Spiral 
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Using the one balanced concept design, the designer can begin to perform trade- 

off studies. This is accomplished using one or both of two methods: the one-factor-at-a- 

time design approach or the Pareto plot. 

1.1.1 One-Factor-At-A-Time Design Approach 

To evaluate the current concept design, the designer will compare his1 design to 

the customer requirements. But if the design does not produce the required results, the 

designer will make changes to the baseline concept design. By selectively changing the 

design parameters or factors, the designer is using his experience to select the correct 

factor to improve the performance of the concept design. Each time the designer makes 

changes to the design, he must then proceed around the design spiral to attain a balanced 

concept design, if possible. If a feasible solution is achievable, there is no guarantee the 

new concept design will be an improvement over the last concept design. 

With this one-factor-at-a-time design approach, there is no systematic or specific 

methodology being applied. The designer is developing point designs in an educated 

manner, but he is not using a specific methodology. Instead, the designer is relying on 

his past experience and understanding of submarine concepts to identify the correct 

design factors to change and making the appropriate changes. Yet this approach is ad' 

hoc, and the resulting process is highly inefficient, not systematic, and may not lead to an 

1 In the interest of brevity, the personal pronoun will be "he," even though "he or she" is 

understood by the author and reader. 
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optimum (defined as meeting the customer requirements at the least cost) design solution. 

Furthermore, once the designer has a "good" concept design, he has no process or 

methodology to determine whether a better concept design is possible or not. 

1.1.2 Pareto Plot 

This method uses the Overall Measure of Effectiveness (OMOE) as a means to 

determine the optimal solution. An excellent reference on the Pareto plot is by 

Whitcomb [3]. To generate the Pareto plot, the designer develops numerous concept 

designs and determines the OMOE and cost for each. By plotting each point design on 

the Pareto plot (see Figure 2), the designer can examine his various designs and have a 

graphical comparison. If a cost constraint is imposed, the designer can determine from 

this graph the best concept design (the highest OMOE under the cost constraint). 

1 I 

Max Pareto Frontier         / 
w   / /    »    • 

OMOE y V* *   * 
s         • /   • 

/    *     * 
• 

Min • 

^ 
Min                    Cost Max 

Figure 2: Pareto Plot 

The Pareto plot can be a very useful tool, but it also has its limitations. One 

limitation is the determination of the Pareto frontier. In theory, the designer would 

produce an infinite number of concept designs and plot each on the Pareto plot to 

16 



determine the Pareto frontier. But this task is close to impossible. The designer would 

only produce enough point designs until some form of the Pareto frontier is visible. But 

the difficulty lies in the fact that the designer cannot say with 100 percent certainty that 

he has determined the frontier. At a specific cost, the designer will have a design with 

the highest OMOE, but he is not certain if there is another design at the same cost with an 

even higher OMOE. 

Another limitation of the Pareto plot is the inability to examine other point 

designs. To examine another point design, the designer will have to selectively change 

the design factors and rebalance the design by using the design spiral. Or if the designer 

would like to examine a point design of a specific cost and OMOE, the designer would 

have to estimate the correct design parameters to produce a concept design at the required 

cost and OMOE. The first attempt would miss its mark, so the designer will have to 

iterate until he attains the correct cost and OMOE. 

The one-factor-at-a-time design approach and the Pareto plot are limited. These 

limitations are further amplified when considering the concept exploration phase of the 

acquisition cycle. 

1.2 Concept Exploration Phase of the Acquisition Cycle 

The U. S. Navy estimates that 70 to 85 percent of the life cycle cost of major 

acquisition programs is determined upon the completion of the concept exploration phase 

[4]. It is therefore critical that the selected concept design not only satisfy the physical 

constraints, engineering design considerations and customer requirements, but at the 

lowest life cycle cost. But how is this achieved? The designer can use the one-factor-at- 
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a-time approach or the Pareto plot discussed in the previous section, but the designer 

cannot guarantee that the selected design is optimal, based on customer requirements, at 

the lowest cost. 

Even if the designer can produce an optimal concept design, the designer has no 

method to examine the impact of changing one design factor and its impact on the 

balanced design. Neither of the two methods previously discussed provide a means of 

easily evaluating changes in the design factors. For instance, if the designer decides to 

add an additional 40 feet to the parallel mid-body to accommodate a larger modular 

payload section, he has no other method available other than to produce another point 

design via the design spiral. Or if it is determined that the current design is one knot 

below the Top Level Requirement (TLR) for speed, the designer has no methodology for 

a course of action other than make point changes and re-balancing the design. 

In summary, a methodology is needed to allow the designer to systematically 

optimize the concept design, efficiently perform trade-off studies, and examine the 

impact on the design when a design factor is changed. A statistical tool called Response 

Surface Methods can accomplish (and even surpass) this challenge. 

1.3 Response Surface Methods 

Response Surface Methods (RSM) has been successfully used since the 1950s on 

a wide variety of problems in chemical engineering, agriculture, chemistry and 

mechanical engineering [5][6]. But with faster computer processor speed, computer 

simulation of physical processes has become a standard tool of many design and 

manufacturing engineers. Powerful computer-aided design tools, finite element analysis 
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programs, and high-level deterministic and stochastic simulation packages make possible 

computations and detailed analysis of engineering programs not dreamed of years ago. 

With the development of large-scale mathematical models of engineering designs, RSM 

can now be applied to the model to optimize the design [7]. For instance, the Aerospace 

Systems Design Laboratory (ASDL) at Georgia Institute of Technology is using RSM to 

optimize the complex design of aircraft. 

Using RSM methodology, the designer will produce an n-dimensional surface 

using a group of techniques in the empirical study of relationships between one or more 

measured responses (the output variables) and a number of factors (the input variables). 

This surface represents all feasible and balanced designs. To create this surface, the 

designer will be required to produce a finite number of point designs. The selected point 

designs are very specific and are determined by the type of response surface design 

model selected not the designer. Most importantly, once the response surface is created, 

the designer can examine any other point design by moving along the surface. The 

designer is not required to start at the beginning using the design spiral. Along this 

surface the designer can find the optimal solution and effectively perform trade-off 

studies. 

In general, RSM is used to answer the following questions: 

1. How do the design factors affect the specific response? 

2. What values, if any, of the factors will produce a response simultaneously 
satisfying specified constraints, thresholds, and goals? 

3. What values of the factors will produce an optimal design, and what is the 
response surface like close to this optimal solution? 
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1.4 Response Surface Methods Applied to Submarine Design 

This chapter illustrates the need for an improvement in current submarine concept 

design practices. With the combination of a submarine mathematical model and a 

powerful statistical software package, RSM can be applied to submarine concept design 

and can yield great insight. Once the response surface is created, the designer can move 

along the surface to examine the impact of changing design factors on the response, 

perform trade-off studies, and determine the optimal solution (based on customer 

requirements). For instance, if RSM is applied to the Pareto plot, a response surface can 

be generated for both the cost and OMOE. Once the response surface is created, the 

designer can move along the surface and easily determine the optimal OMOE for a 

specified cost. 

The application of RSM to submarine concept exploration is the purpose of this 

thesis. This study is structured in the following format: Chapter Two will provide a basic 

understanding of RSM and application of this technique. Readers will be provided two 

references if they desire further information. To generate the concept designs needed to 

create the response surface, a mathematical model must be used. Chapter Three will 

discuss the mathematical model used to generate the data for this thesis. Chapter Four 

will show the results from applying RSM to a submarine concept design, and will also 

discuss lessons learned from this research and the limitations of applying RSM. Chapter 

Five will then summarize the application of RSM to submarine concept design and 

provide direction for further work. 
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Chapter 2: Response Surface Methods 

This chapter will review the basic fundamentals of RSM. If the reader needs a 

more detailed explanation, there are two excellent reference books. "Understanding 

Industrial Designed Experiments," by Schmidt and Launsby [8] focuses on the 

application of RSM to current design problems, but only reviews the basics of the 

statistical techniques used in RSM. For a more detailed explanation of the statistics, 

"Statistics for Experimenters: An Introduction to Design, Data Analysis, and Model 

Building," by Box and Hunter [9] provides an excellent statistical foundation. 

2.1 Terminology 

The following terminology is used in RSM: 

• Factors: The input variables or design parameters. Represented by 
capital letters (A, B, C) or x\. 

• Levels: The different settings for each factor. For a two-level factor, 
the low level is represented by (-1) and the high level as (+1). For a 
three level factor, the intermediate level is represented by (0). 

• Response: The output of interest, represented by the letter y. 
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Interaction(s): Refer to dependencies between a factor's effect on the 
response and levels of another factor. The interaction of A and B is 
represented as AB. 

2.2 Overview ofRSM 

As stated in Chapter One, RSM will produce an n-dimensional surface using a 

group of techniques in the empirical study of relationships between one or more 

measured responses and a number of factors. Two such methods, the Box-Behnken and 

the Central Composite design, perform a quadratic fit between k design factors and the 

response using the following second-degree polynomial approximation: 

k k k        k 

y = b0+
yZb>xi+Hb>rf+TJT

byx'xJ+£- (1) 
,=1 /=] 1=1 j=M 

The coefficients, b0, bj, b\\, and by, are easily obtained from a multivariate regression 

software package. The error term s represents pure error and lack of fit. If the quadratic 

surface does not accurately fit the data, as indicated by the lack of fit error term, either 

the design space is too large or the incorrect factors were selected. If the designer 

determines the poor fit is caused by a large design space, he can improve the fit by 

reducing the design space; this is achieved by reducing the range for each factor. For 

instance, if initially factor A had the low level (-1) set at 100 and the high level (+1) set at 

200, then setting   (-1) at 30 and (+1) at 70 will improve the accuracy of the quadratic fit. 

Once a "good" quadratic fit is attained, this quadratic surface represents all feasible 

concept designs. 
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To apply RSM, one would proceed through the following three steps: 

1. Engineering Model: Build a mathematical model of the design, and 
identify the potential factors for each response of interest. 

2. Screening Experiment: Determine which factors are critical, i.e. those 
factors that have a statistical impact on the response. 

3. Response Surface Modeling: Within the design space, create a quadratic 
surface for the response as a function of the critical factors. 

2.3 Engineering Model 

The engineering model is a critical aspect of RSM. The engineering model must 

contain enough fidelity to provide useful results. Once the level of detail is in the model, 

the designer must then select the response(s) he is interested in investigating and 

optimizing. There can be one or more responses. When there are multiple responses, the 

steps outlined in this chapter must be applied to each response. Chapter Four will 

examine five responses related to submarine concept design. 

Once the responses are identified, the designer will need to determine all possible 

sources of variation for each response. The sources of variation can be grouped into three 

categories: 

1. Controllable:-the designer can control this source of variation. For 
example, if the response of interest is submerged displacement for a 
submarine design, then the designer should ensure that all the designs are 
weight limiting or volume limiting. By controlling this source of variation, 
the response accuracy will improve. 

2. Noise: the designer cannot control this source of variation. 

3. Factors: the sources of variation that the designer wants to investigate. 
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If other sources of variation exist (unknown to the designer), the accuracy of predicting 

other point designs by moving along the surface will be degraded. The loss of accuracy 

is dependent on the magnitude of the unaccounted variation source, and will be indicated 

by the quadratic curve fit statistical results. 

Many industrial experiments have failed because all sources of variation were not 

identified prior to the start of conducting RSM. A good design will identify the factors 

and all controllable and noise variations ahead of time. Using the statistical techniques of 

randomization, repetition, and blocking, the designer has the ability to reduce or 

eliminate unwanted sources of variation. Yet this must be arranged before applying 

RSM. If the designer does not fully understand all the statistical tools available and does 

not use them to conduct well-designed experiments, then he may be misled by the results. 

2.4 Screening Experiment 

The purpose of the screening experiment is to determine which factors identified 

in Section 2.3 are critical (factors that statistically effect the response). The most 

efficient way to identify these factors is to use an experimental design process called 

Design of Experiments (DOE). By applying the methodology of DOE, the designer 

systematically develops numerous design variants to observe the corresponding changes 

in the response. By collecting the data and analyzing the results, the designer uses 

statistical analysis to estimate the effect of each factor and their interactions on the 

response. Using the statistical tools ensures accuracy and validity. Overall, the DOE 
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methodology is a scientific approach applied to a concept design by the designer to 

determine how the factors effect the response. 

For the screening experiment, only two levels per factor are used to estimate the 

effect of each factor on the response (three or five levels per factor are used when 

developing the quadratic surface for RSM). It is critical that the levels for each factor are 

within the design space of interest. The importance of this will be demonstrated in 

Chapter Four. 

To determine the critical factors, DOE consists of the following steps to be 

discussed in more detail: 

1. Experiment Setup: Depending on the number of factors and required 
resolution (to be discussed), the number of variants n, or experiment runs, 
to be developed is determined. More important, the factor levels for each 
variant are predetermined using orthogonal arrays. 

2. Execution: The designer produces n variants. 

3. Analysis: Since orthogonal arrays were used to develop the variants, 
statistical analysis can be used to estimate the effect of each factor and 
their interactions on the response. 

2.4.1 Experiment Setup 

One option to determine the required number of experiment runs, or design 

variants, is the full factorial design matrix. The full factorial design matrix requires the 

designer to produce a variant for each possible combination of the factors. The number 

of variants, n, for a two-level screening experiment as a function of A: factors is 

w = 2*. (2) 
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Table 1 is an example of a full factorial design matrix (k = 3) and includes every 

possible combination of the factors. As shown in Table 1, (-1) is the coded value for the 

low level and (+1) is the coded value for the high level. The reasoning for the selection 

of (-1) and (+1) for the low and high levels is to verify that the design matrix is 

orthogonal and to generate the factor interaction columns (both to be explained shortly). 

The factors A, B, and C could, for example, correspond to temperature, pressure, and 

time. 

Run A B C 

1 -1 -1 -1 
2 -1 -1 +1 
3 -1 +1 -1 
4 -1 +1 +1 
5 + 1 -1 -1 
6 +1 -1 +1 
7 + 1 +1 -1 
8 + 1 +1 +1 

Table 1: Full Factorial (k=3) Design Matrix 

The advantage of the full factorial design matrix is the ability to estimate the 

effect of all factor and factor interactions on the response. To further expand upon the 

example in Table 1, the three:factor full factorial design matrix can estimate the effects of 

the following: 

• Three linear or main effects (A, B, C), 

• Three two-way interactions (AB, AC, BC), 
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•    One three-way interaction (ABC). 

Depending on the engineering model, the factor interactions' (two-way, three-way, etc.) 

effects may be statistically significant, and their impact on the response can be 

determined with the full factorial design matrix. 

As mentioned earlier, full factorial design matrices use orthogonal arrays to 

estimate the effects of each factor and their interactions independently of others. 

Mathematically, the requirements of an orthogonal array are: 

1. Sum of each column is zero. 

2. The dot product of any two columns is zero. 

Another way to visualize orthogonal arrays is shown with Table 1. When A is at (-1), the 

remaining columns have a balanced number of (+1) and (-1) values. This also applies for 

all other columns evaluated at their (+1) and (-1) levels. This balancing property results 

in an orthogonal design, which allows the designer to estimate the effects of each factor 

and factor interactions independently of the others. 

With the orthogonal design matrix, the statistical estimation of the factor effect on 

the response is simple to compute (for a more detailed explanation, see reference [7]). 

For the specific column associated with the factor of interest, the designer should 

determine the average of the responses associated with the (-1) values and average for the 

(+1) values. The difference in the average for the (-1) and the (+1) is a measure of the 
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effect ofthat factor on the response. The designer can use either the t-test or the F-test to 

determine if the difference is statistically significant. 

Table 1 has a column for each factor, which allows the designer to examine the 

effect of each factor on the response using the method described in the previous 

paragraph. To estimate the effect of the factor interactions, one must produce similar 

columns for each factor interaction. With the (+1) and (-1) notation, the factor interaction 

AB column is simply the product of columns A and B, row by row. Table 2 shows all the 

possible factor interactions of the example in Table 1. By visual inspection of Table 2, 

the factor interaction columns are orthogonal and allow the designer to estimate the effect 

of the factor interactions on the response. 

Run A B C AB AC BC ABC 

1 -1 -1 -1 +1 + 1 +1 -1 
2 -1 -1 + 1 +1 -1 -1 + 1 
3 -1 +1 -1 -1 +1 -1 +1 
4 -1 +1 +1 -1 -1 +1 -1 
5 + 1 -1 -1 -1 -1 +1 +1 
6 + 1 -1 + 1 -1 + 1 -1 -1 
7 + 1 +1 -1 + 1 -1 -1 -1 
8 + 1 +1 + 1 + 1 +1 +1 + 1 

Table 2: Full Factorial Design Matrix with Factor Interactions 

The most serious disadvantage of the full factorial design is that the number of 

variants can become quite large as the number of factors increases. In most experiments, 

interactions beyond two ways are not significant. Therefore it is possible to use a 

fractional factorial design matrix to reduce the number of variants required to estimate 
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the effect of the factors on the response. But since one would be performing a subset of 

the full factorial design, only a portion of the factor interaction effects can be estimated. 

The fractional factorial design matrix allows the designer to estimate all linear 

effects and desired factor interactions while requiring fewer runs than the full factorial. 

The number of runs for a fractional factorial is 

« = 2*-', (3) 

where q = 1 indicates a half fraction, q = 2 a quarter fraction, etc. The advantage of the 

fractional factorial is the number of runs required to estimate all linear effects and 

specified interactions is smaller. Like the full factorial, the fractional factorial design 

matrices are orthogonal and therefore allow accurate estimation of the factor and 

specified factor interaction effects on the response. 

Since the fractional factorial does not require all possible factor combinations, 

some of the higher order factor interaction effects become non-estimable. An effect is 

non-estimable when it its confounded, or aliased, with another effect. For example, 

consider a 24"' fractional factorial. To perform a full factorial would require 16 

experiment runs, but by performing a half fraction, only eight experiment runs are 

required. To generate the de'sign matrix for the fractional factorial, one should first 

generate the design matrix for a 23 showing columns for each factor and factor 

interactions (Table 2). To generate the coded settings for the fourth factor D, one could 

use the factor interaction column ABC as shown in Table 3. Therefore, when the 

experiment is conducted, the factor interaction column ABC is used to determine the 
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setting for factor D. By doing so, one has confounded factor D with the factor interaction 

ABC (represented by D=ABC). 

Run A B C AB AC BC D=ABC 

1 -1 -1 -1 +1 +1 +1 -1 
2 -1 -1 +1 +1 -1 -1 +1 
3 -1 +1 -1 -1 +1 -1 +1 
4 -1 +1 +1 -1 -1 +1 -1 
5 +1 -1 -1 -1 -1 +1 +1 
6 +1 -1 +1 -1 +1 -1 -1 
7 +1 +1 -1 +1 -1 -1 -1 
8 +1 +1 +1 +1 +1 +1 +1 

Table 3: 24"' Fractional Factorial Design Matrix 

In the example of Table 3, the main factor D is confounded with the factor 

interaction ABC, or D = ABC. (Using the equal sign does not imply that the D and ABC 

effects are the same, but that the same column is used to represent D and ABC.) By 

assigning D = ABC, the evaluation of the D and ABC column effects cannot be 

separated. When the experiment is complete and if the column effect is determined to be 

statistically significant, it is either caused by factor D, factor interaction ABC, or some 

combination of the two. If the designer assumes the ABC interaction is unlikely to be 

important, then the column measures the effect of factor D. If the designer believes this 

assumption is not true, the designer should select another design matrix. 

By using the factor interaction column ABC to generate the factor D levels in 

Table 3, the designer has created additional confounded interactions other than ABC = D. 

The determination of the remaining confounded factor interactions is easily determined. 
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If any column is multiplied by itself, the resulting column contains all (+1) values, called 

the identity column, I. Using this relation, the "defining relation" for the example in 

Table 3 is attained as follows: 

1. Start with D = ABC 
2. Multiply each side by D and use DD = D = I 
3. DD = I = ABCD 
4. The defining relation is I = ABCD 

With the defining relation defined for the example in Table 3, other confounded effects 

are determined by multiplying each factor and their interactions by the defining relation. 

Using the relation AA = BB = CC = DD = I, the simplified equation is the confounded 

relationship. Table 4 shows the alias pattern for the example in Table 3. 

Effect Math Alias 
A AI = AABCD = BCD A = BCD 
B BI = BABCD = ABBCD = ACD B = ACD 
C CI = CABCD = ABCCD = ABD C = ABD 
D DI = DABCD = ABCDD = ABC D = ABC 
AB ABI = ABABCD = AABBCD = CD AB = CD 
AC ACI = ACABCD = AABCCD = BD AC = BD 
AD ADI = ADABCD = AABCDD = BC AD = BC 
BC BCI = BCABCD = ABBCCD = AD BC = AD 
BD BDI = BDABCD = ABBCDD = AC BD = AC 
CD CDI = CDABCD = ABCCDD = AB CD = AB 
ABC ABCI = ABCABCD = AABBCCD = D ABC = D 
ABD ABDI = ABDABCD = AABBCDD - C ABD = C 
ACD ACDI = ACDABCD = AABCCDD = B ACD = B 
BCD BCDI = BCDABCD = ABBCCDD = A BCD = A 
ABCD ABCDI = ABCDABCD = AABBCCDD = I ABCD = I 

Table 4: Alias Pattern For The Example In Table 3 

Upon examination of Table 4, all factor effects are confounded with three-way 

interactions, and all two-way interactions are confounded with other two-way 
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interactions. Since in most designs three-way interactions are not statistically significant, 

the alias of the factor effects with the three-way interactions should not pose a problem. 

Yet on the other hand, the alias of the two-way interactions with other two-way 

interactions needs to be evaluated for the specific design being investigated. The key to 

using fractional factorial design matrices is to purposely plan which interaction effects 

are confounded. 

To describe the alias of factor and factor interactions, the term resolution is used 

for fractional factorial designs. The definitions are as follows: 

Resolution III: 
- Main effects are not confounded with one another. 
- Main effects confounded with two-way interactions. 

Resolution IV: 
- Main effects are not confounded with one another. 
- Main effects are not confounded with two-way interactions. 
- Main effects confounded with three-way interactions. 
- Two-way interactions confounded with other two-way interactions. 

Resolution V: 
- Main effects are not confounded with one another. 
- Main effects are not confounded with two-way interactions. 
- Main effects are not confounded with three-way interactions. 
- Two-way interactions are not confounded with one another. 

Using this terminology, the example in Table 3 is a fractional factorial design with 

resolution IV. 

In summary, the experimental setup of the screening experiment is an important 

step. The goal is to determine the critical factors, and this can be accomplished by using 

a full factorial or a fractional factorial. If the fractional factorial deign matrix is selected, 

32 



the designer must carefully select which interactions are confounded, and this is 

determined by the engineering design under consideration. 

2.4.2 Execution 

Now that the experiment setup is complete, the designer can execute the plan. 

The designer will develop each variant with the factor levels specified by the design 

matrix selected. As the designer goes around the design spiral for each variant, he should 

be checking the design characteristics for any unusual results or unaccounted variance. 

For each balanced design, the selected response is recorded for the analysis phase. 

2.4.3 Analysis 

With the variants complete, the designer now examines the results using a 

statistical package. For this research, the statistical package JMP® by SAS institute is 

selected to analyze the data. Guided by the results and graphical displays of the statistical 

package, the designer selects those factors and factor interactions that are statistically 

significant (to be illustrated in Chapter Four). These critical factors will then be selected 

to develop the response surface. 

2.5 Response Surface Modeling 

The designer now develops a curved surface (quadratic) as a function of the 

critical factors. To create this surface, the designer has two options: the Central 

Composite and Box-Behnken design. This surface represents all feasible designs within 

the design space defined by the range of the critical factors. Once the surface is created, 
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the designer can easily examine other point designs by moving along the surface and does 

not need to revert back to the design spiral. 

The Box-Behnken design is a three-level, nearly orthogonal, resolution V design 

used for modeling factors with three-levels. The slight non-orthogonal design matrix is 

not a concern if the analysis is conducted using least squares regression. As shown in 

Figure 3 for three factors, the Box-Behnken design does not include any corner points of 

the design space. Therefore if the corner points are infeasible, the Box-Behnken design 

should be used to generate the quadratic curved surface. Yet the disadvantage is that the 

Box-Behnken design will produce a higher uncertainty of prediction near the corner 

points. 
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Figure 3: Three Factor Box-Behnken Design 
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The Central Composite design is a three- or five-level design used to create the 

quadratic curved surface by including the center, corner, and axial points of the design 

space (see figure 3 for a three-factor Central Composite design). The axial points are at a 

specified distance from the center, which means that (+1) or (-1) no longer represent the 

factor maximum or minimum. Since the Central Composite design uses the corner points 

of the design space, the generated curved surface will be more accurate (as compared to 

the Box-Behnken design) at these points, but this might strain the engineering model. 

A 

■7G- 

Figure 4: Three Factor Central Composite Design 
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Once the designer has created the quadratic surface using the Box-Behnken or 

Central Composite design, the statistical packages will provide the statistical results and 

graphical displays to determine the accuracy of the surface fit. This will be illustrated in 

Chapter Four. 

2.6 Response Surface Methods Summary 

This chapter has briefly explained RSM methodology. By applying the DOE 

screening experiment, the designer has a tool to systematically determine the critical 

factors within the design space of interest. With the critical factors identified, the 

designer can focus his attention on the critical factors and not on the other factors that 

have no impact on the response. Using the critical factors, the designer can create the 

response surface and efficiently perform trade-off studies. Using a statistical software 

package, the designer can use the response surface to examine an infinite number of 

design variants. 
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Chapter 3: Submarine Model 

The first step to apply RSM to submarine concept designs is to develop a 

mathematical model. The MIT Ocean Engineering 13A curriculum has been using a 

MathCAD Submarine Design Model for developing concept designs. Versions of the 

MathCAD Submarine Design Model have been used for numerous conversion and 

yearlong design projects as part of the curriculum. One such design project, "The Next 

Generation Nuclear Submarine (NGSSN): A Study in Modularity," by Hanson and Hunt 

[10], modified the MathCAD Submarine Design Model for a modular submarine. The 

modular submarine model by Hanson and Hunt is used for this thesis to examine the 

application of RSM. 

3.1 Modular Submarine Model 

The main design objective of the modular submarine model, as defined in the 

NGSSN mission need statement, was to enable a rapidly re-configurable submarine 

platform which could incorporate new technologies and'developments as they evolved. 

To achieve these objectives, a module payload section (64 ft in length) consisting of three 
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20 ft by 20 ft module bays was inserted in the center section of a modern submarine hull 

form, as shown in figure 5. The specifications of the resulting submarine are given in 

Table 5. 
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Figure 5: Baseline Ship Profile View 

Parameter Baseline Design 
Displacement (surfaced) 8499 ltons 
Displacement (submerged) 9562 ltons 
Length 372.4 feet 
Diameter 40 feet 
SSTG's (combined) 7200 kW 
Payload Section Length 64 feet 
Installed Shaft Horse Power 28,100 shp 
Speed (submerged) 28.08 knots 
Endurance Range 90 days 
Compliment 100 

Table 5: Baseline Design Summary 
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Hanson and Hunt used an Overall Measure of Effectiveness (OMOE) as a 

framework for the evaluation of individual submarine designs in the preliminary trade-off 

design stage. The selected OMOE was a function of three design parameters: test depth, 

submerged speed, and payload length. By including the length of the modular payload 

length as one of the OMOE parameters, Hanson and Hunt addressed the concerns of 

platform mission modularity. Chapter Four selects this OMOE as one of the responses to 

be investigated. 

If the reader needs more information on the project by Hanson and Hunt, see 

reference [10]. Appendix B of this reference includes the modified MathCAD Submarine 

Design Model used for the modular submarine. The same MathCAD model is used for 

this thesis to generate design variants. 

3.2 MathCAD Submarine Design Model 

The MathCAD Submarine Design Model uses the software program MathCAD 

by MathSoft. Using this software package, the designer directly inputs the mathematical 

equations, similar to Figure 6, into the document. This ease of use and the ability to 

quickly change the mathematical equations are advantages of using MathCAD. If the 

designer wants to evaluate a radically different design concept, the designer can easily 

modify the MathCAD Submarine Design Model. 

LCG LEADs :- 

W pbLCG LEAD - W pbm-LCG pb 

wpbs, 
Figure 6: MathCAD Example 
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The most significant disadvantage of the MathCAD Submarine Design Model is 

the manual iterations required by the designer to obtain a balanced design. For example, 

one section of the model determines the volume requirements based on specified design 

parameters. Then in another section, the designer "spins a hull" and determines the 

volume available with the specified hull. If the volume requirements and the hull volume 

do not match, the designer must iterate specified design parameters until a balance is 

achieved. Taking into account the other balancing requirements in the MathCAD 

Submarine Design Model, the designer will expend about four hours per variant, on 

average, manually manipulating the design parameters to attain a balanced submarine 

concept design. 

3.3 Submersible Design Program 

The author used the equations from the MathCAD Submarine Design Model to 

develop a computer program called the "Submersible Design Program." Since the 

underlying equations are identical in the Submersible Design Program and the MathCAD 

Submarine Design Model, both design tools will generate identical concept designs. The 

difference, though, is the synthesis algorithm built into the Submersible Design Program. 

This synthesis algorithm performs all the manual iterations performed by the designer in 

the MathCAD Submarine Design Model. Using the Submersible Design Program, the 

designer inputs the design parameters and presses the "synthesis" button to activate the 

algorithm. With the guidance of the synthesis algorithm; the designer can produce a 
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balanced design in about five minutes compared to the four hours using the MathCAD 

Submarine Design Model. 

The Submersible Design Program is programmed in JAVA, which is an object- 

oriented language with a vast library for graphical user interfaces (GUI). The advantages 

of the program include the following to be discussed in more detail: graphical user 

interface, object-oriented modularity, and the synthesis algorithm. 

3.3.1 User Interface 

The JAVA language has a vast library for graphical user interfaces. Taking 

advantage of GUI library, the Submersible Design Program has a user-friendly interface. 

Via the interface, the designer can easily manipulate the design parameters for the 

concept design. With the data entered, the designer presses the "synthesis" button to 

attain a balanced design. Once a balanced concept design is attained, the program 

provides two graphs to aide the designer in the evaluation of the design: 

1. Profile View: A profile view of the concept design, showing the location 
of compartments, bulkheads, decks, and variable ballast tanks. 

2. Equilibrium Polygon: Plots the equilibrium polygon with the specified 
loading conditions. 

3.3.2 Object-Oriented Modularity 

All calculations in the Submersible Design Program are grouped into classes by 

functionality as illustrated in Figure 7. The general description of each class is as 

follows: 
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• Volume: Calculates the volume requirements (operations compartment, 
engine room, pressure hull, main ballast tanks, submerged, etc.) based on 
design parameters. 

• Hull: Generates a submarine hull. 

• Propulsion: Calculates the submerged and surface speed based on the 
installed propulsion system and generated submarine hull. 

• Layout: Specifies location of bulkheads, decking, and variable ballast 
tanks. 

• Weights: Calculates the surfaced and submerged displacement. Locates 
lead to attain an even submerged trim. 

• Polygon: Calculates the loading conditions for the equilibrium polygon 
and generates the equilibrium polygon plot. 

• Surface: Calculates the surfaced draft, GM, and trim. 

• Cost: Calculates the lead ship acquisition cost using a weight-based 
model. 

Module 

1 
1 1 1 1 1 1 1 1 

Volume Hull Propulsion Layout Weights Polygon Surface Cost 

Figure 7: Submersible Design Program Abstract Class Architecture 

Using the architecture shown in Figure 7, the Submersible Design Program takes 

advantage of the JAVA object-oriented language to produce a modular program. Figure 

8 illustrates the modular architecture of the program. The abstract superclass is Module, 

which defines the methods needed to interact with the user interface. By defining 

Module as an "abstract" class, any class that inherits Module must implement the 

methods defined in Module to interact with user interface. Therefore, when Hull class 
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inherits Module (indicated by the connecting line), the Hull class will have the required 

methods to interact with the graphical user interface. Similarly, any other class that 

inherits Module also has the ability to interact with the user via the graphical user 

interface. 

Module 
Abstract Class 

1 1 

Volume 
Abstract Class 

Hull 
Abstract Class 

Weight 
Abstract Class 

1 
1                    1 

BasicHull 
Class 

NewHull 
Class 

Figure 8: Submersible Design Program Modularity 

The Hull class is used to generate the submarine hull including any appendages 

and the sail. Yet the key to the modularity is that the Hull class does not provide any of 

the mathematical modeling. By defining Hull as an abstract class, this class defines the 

required methods needed to interact with the synthesis algorithm. Therefore, any module 

that inherits Hull must implement the defined methods needed to interact with the 

synthesis algorithm. In Figure 8, BasicHull class contains the mathematical modeling to 

generate a submarine hull, and since it inherits the abstract class Hull, BasicHull can 

interact with the synthesis algorithm. And, just as important, since Hull inherits Module, 

so does BasicHull. In summary, BasicHull performs the mathematical modeling needed 

to generate a submarine hull and by using inheritance, BasicHull has the required 
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functions needed to interact with the synthesis algorithm and the user interface. If the 

reader desires more information on the object-oriented JAVA language, see reference 

With the architecture described in the preceding paragraph, the modularity works 

as follows: If the designer would like to examine a different hull form, he needs to 

simply develop the mathematical model to represent the new hull form. With the 

equations defined, the designer translates the equations into the JAVA language and calls 

the new class NewHull. Through inheritance, as shown in Figure 8, the NewHull class 

can be inserted into the Submersible Design Program and interact with the synthesis 

algorithm and the user interface. 

The modularity of the Submersible Design Program allows the designer to add 

more detailed calculations or different attributes to the program and therefore analyze for 

different concept designs. In order to do this, the designer must know the JAVA 

programming language. On the other hand, if the design under consideration is radically 

different, the modularity might not work. In this case, the architecture of the program 

itself may need minor changes. If the work to modify the source code is significant, the 

designer may want to use the MathCAD model because it is very easy to modify. 

3.3.3 Synthesis Algorithm 

The synthesis algorithm in the Submersible Design Program aides the designer in 

quickly attaining a balanced concept design. The algorithm executes each of the classes 

in the program and depending on the out-of-balance conditions, will change the design 

parameters to produce a balanced concept design. If the algorithm cannot produce a 
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balance design, the algorithm will terminate and inform the designer why. For example, 

if the designer selects a submarine diameter of 40 ft, but attempts to install five decks 

with a deck height of 12 ft, the synthesis algorithm will terminate and inform the 

designer. He can then adjust the number of decks, deck height, or diameter and rerun the 

synthesis algorithm. 

With no errors, the synthesis algorithm takes about one minute to execute. If 

errors do develop, the designer, with the aide of the synthesis algorithm, can modify the 

design parameters until a balanced design is achieved. From start to finish, the designer 

can produce one balanced concept design in about five minutes with the aide of the 

synthesis algorithm. 

3.4 Data for Thesis 

The modular submarine model by Hanson and Hunt is used for the application of 

RSM. As stated earlier, the MathCAD Submarine Design Model and the Submersible 

Design Program will produce the same concept design. With the ability to quickly 

develop concept designs, this thesis used the Submersible Design Program for the 

generation of the design variants. To validate the Submersible Design Program, the 

MathCAD Submarine Design Model was used to verify the results. 
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Chapter 4: Analysis 

Using the modular submarine model from Chapter Three, this thesis examines the 

following responses: cost, submerged displacement, length, submerged speed and 

OMOE. The first four responses were selected since they are the main characteristics of 

a submarine design. The fifth response, OMOE, is used to examine the application of 

RSM to the Pareto plot (OMOE versus cost) and allow the designer to optimize the 

design based on customer preference. For each of the selected responses, the payload 

length is selected as one of the factors. The methodology in Chapter Two will determine 

if the payload length is a critical factor, and if so, to what extent it impacts the design. 

Once the response curve is generated, the designer can perform trade-off studies to 

examine the impact of changing the payload length on the selected responses of cost, 

submerged displacement, length, submerged speed, and the OMOE. Prior to performing 

this analysis, this chapter will first review the methodology used by Hanson and Hunt to 

select their final concept design. 
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4.1 Hanson and Hunt 

When performing their concept exploration to select their final concept design, 

the design team was not aware of RSM. They selected their final concept design as 

follows: The sponsor of the project directed the design team to perform their trade-off 

analysis by varying the following four factors: submerged speed, test depth, diameter, 

and payload length. These parameters were selected to capture major design drivers 

(submerged speed and test depth), geometry (diameter), and the main useful 

characteristic for a modular design (payload length). Starting with a baseline design, 18 

variants were used to accurately populate a design space. The variants were developed 

by deviating from the baseline design in each of the four factors. 

The design team had originally planned on using the 18 variants to create a Pareto 

plot to help select the final concept design. It was at this time the design team learned of 

the capability of RSM and the statistical software JMP®. With the knowledge of RSM 

and the JMP® software, the design team wanted to recreate their variants using either the 

Box-Behnken or the Central Composite design (the factors were specified by the 

sponsor). Yet time constraints forced them to use the original 18 variants. On the other 

hand, the design team was able to use the JMP® software to their advantage. Each 

variant (factor levels and responses of interest) was entered in the JMPR program and, 

using standard least squares model fitting, the design team created a quadratic response 

surface as a function of the four factors. The design team then used the response surface 

to help select the final concept design. 

In summary, the following observations are provided regarding the methodology 

used by the design team to select their final concept design: 

48 



• The factors were selected first, based on designer experience. The design 
team did not first pick the response of interest and then use the DOE 
methodology to determine the critical factors. 

• With the selected factors, the design team did not use the Box-Behnken or 
the Central Composite design to develop the variants. Instead, they 
systematically varied the factors and used the statistical software package 
to create a curve fit (quadratic) as a function of the four factors. 

The purpose of this section is to recreate the response surface using the Box- 

Behnken design. The analysis proceeded as follows: 

• Use the same four factors: submerged speed, test depth, diameter, and 
payload length. 

• The selected factor levels are shown in Table 6 (same as Hanson and 
Hunt). 

• Use the Box-Behnken design to develop each design variant.2 With four 
factors, the Box-Behnken design requires 27 variants to model the design 
space. Appendix A contains the design matrix and the responses. 

• Select shaft horsepower, cost, and the transverse metacentric height (GMt) 
as the responses (this is a subset of the 19 responses selected by Hanson 
and Hunt). 

• Using the Box-Behnken design, a response surface is created by modeling 
the surface with Equation (1) as a function of the four factors. 

This analysis is only applying a portion of the methodology outlined in Chapter Two, 

specifically the application of the Box-Behnken design to create the response surface.- 

But the factors selected were identified by designer experience, not by using the 

screening experiment to identify the critical factors. The results of the shaft horsepower, 

The author initially attempted to use the Central Composite design, but the corner points were 

outside the limits of the parametric equations used in the modular submarine model. 
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cost and GMt response surface model will be analyzed. Then in the following section, 

the complete methodology outlined in Chapter Two will be applied to the cost response 

surface, resulting in an improved model than shown here. 

Factor >1 0 +1 
Submerged speed (knots) 24 28 32 
Test depth (ft) 500 800 1100 
Diameter (ft) 38 40 42 
Payload length (ft) 43 65.5 88 

Table 6: Cost Model Factor Levels 

4.1.1 Shaft Horsepower Response Model 

A shaft horsepower response model is created as a function of the following 

factors: submerged speed, test depth, diameter, and payload length. The analysis of the 

fitted model is shown in Table 7 and 8 and Figure 9. 

The Analysis of Variance, Table 7, summarizes the quality of the model fit to the 

actual shaft horsepower responses. The Total sum of squares (SS) is the sum of squared 

distances of each shaft horsepower response from the shaft horsepower sample mean. 

The Error SS is the sum of squared differences between the predicted model values and 

the actual values. This SS corresponds to the unexplained residual Error after fitting the 

regression model. The Model SS is then the Total SS minus the Error SS. If the selected 

factors accurately model the shaft horsepower response, then the Model SS will be much 

larger than the Error SS and is reflected in the F Ratio. The larger the F Ratio, the better 

the model fit. 
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Analysis of Variance 

Source DF   Sum of Squares Mean Square F Ratio 
Model 14          3166359451 226168532 101.9121 
Error 12           26631012.4 2219251 Prob > F 
C. Total 26          3192990464 <0001 

Table 7: Shaft Horsepower Response Model Analysis of Variance 
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Figure 9: Shaft Horse Power Response Model Leverage Plot 

Scaled Estimates 
Term 

Intercept 

Scaled Estimate Std Error 

860.0874 

t Ratio 

33.64 

Profc»|t| 

<.0001 28931.1 

Diameter(38,42)&RS 866.68333 I      I      1      I       1     1      1              1 430.0437 202 0.0668 
Depth(500,1100)&RS 3205.0192 ! Bill 430.0437 7.45 <.0O01 

Speed(24,32)&RS 14821.028 :ii!   II   430.0437 34.46 <.0001 

Payload(43,88)&RS 4911.1755 H' 430.0437 11.42 <.0001 

Diameter(38,42)*Depth(500,1100) 281.625 1 I I1    I; 744.8575 0.38 0.7.120 
Diameter(38,42)*Speed(24,32)     * 665.075 1 1 II    II 744.8575 0.89 0.3895 

Depth(500,1100)*Speed(24,32) 1043.2825 1 1!    1 744.8575 1.40 0.1866 

Diameter(38,42)*Payload(43,88) 284.15 1 ! : ! L' ' ' ; 744.8575 0.38 0.7095 

Depth(500,1100)*Payload(43,88) 1441.75 1   |   |   !   L   :   ;   '       744.8575 1.94 0.0768 

Speed(24,32)*Payload(43,88) 2652.2265 :   |:                  744.8575 3.56 0.0039 

Diameter(38,42)*Diameter(38,42) 639.81517 |   •   ■   ■   ;   645.0656 0.99 0.3408 

Depth(500,1100)*Depth(500,1100) 204.94392 i   i .         !   645.0656 0.32 0.7562 

Speed(24,32)*Speed(24,32) 3269.6822 ■                  645.0656 5.07 0.0003 

Payload(43,88)*Payload(43,88) 106.32842 1   1   1   I   ■   1   1   1   :   !   645.0656 0.16 0.8718 

Table 8: Shaft Horse Power Response Model Coefficients 
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The F Ratio is a statistical tool to test the hypothesis that all coefficients in 

Equation (1) are zero. If the hypothesis is not true, i.e. at least one coefficient is non- 

zero, then the F Ratio will be large. The "Prob > F" in Table 7 is the probability of 

obtaining a greater F Ratio by chance alone if the specified model fits no better than the 

overall response mean. Significance probabilities of 0.05 or less are often considered 

evidence that there is at least one significant regression factor in the model. Since Table 

7 has "Prob > F" as less than 0.001, the model is an excellent predictor of the required 

shaft horsepower. 

Another method to examine the quality of the model fit is the leverage plot, 

Figure 9. By examining the graph, the designer can decide if the model predicted values 

(middle solid line) is a better fit than the shaft horsepower sample mean (dashed 

horizontal line). The dashed lines on each side of the model predicted values are the 95 

percent confidence curves. These indicate whether the F Test is significant at the 5 

percent level by showing a confidence region for the model predicted values. If the 95 

percent confidence curves cross the shaft horsepower sample mean, then the model is 

significant; if the curves do not cross, then it is not significant at the 5 percent level. 

Examination of Figure 9 illustrates that the model is significant. 

The RSq in Figure 9 estimates the proportion of the variation in the shaft 

horsepower response around the mean that can be attributed to terms in the model rather 

than to random error. An RSq of 1 occurs with there is a perfect fit (all errors are zero). 

An RSq of 0 means that the model fit predicts the response no better than the overall 

mean response. For the shaft horsepower response, Figure 9 displays an RSq of 0.99, 

therefore the shaft horsepower response model is an excellent fit. 
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The RMSE (Root Mean Square Error) in Figure 9 estimates the standard deviation 

of the random error. It is the square root of the mean square for error in the 

corresponding Analysis of Variance table. 

Table 8 shows the sample estimates of the coefficients for Equation (1). The 

standard error is an estimate of the standard deviation for each coefficient. The t Ratio 

and "Prob > |t|," similar to the F Ratio, test for the hypothesis that each coefficient is 

zero. A very large t Ratio is an indicator that the true coefficient might not be zero. 

Therefore, the "Prob > |t|" is the probability of generating an even greater t statistic, given 

that the coefficient is zero. Probabilities less than 0.05 are often considered as significant 

evidence that the coefficient is not zero. Reviewing Table 8, the submarine diameter has 

a "Prob > |t|" of 0.0668, indicating that the diameter is not statistically significant, i.e. it 

has very little impact on the shaft horsepower response. On the other hand, test depth, 

submerged speed and the payload length are statistically significant and do impact the 

shaft horsepower response. Also note that the interaction between submerged speed and 

payload length is statistically significant. 

The analysis of the results in Table 7 and 8 and Figure 9 is summarized as 

follows: The quadratic model, with the coefficients defined in Table 8, is statistically 

significant. The model can accurately predict the required shaft horsepower as a function 

of the four factors, with an estimated standard deviation of 1489.7 shaft horsepower. 

Examining Table 8, the graphical display shows that the submerged speed is a large 

driver for the shaft horsepower requirement followed by payload length and test depth. 
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On the other hand, the standard deviation of 1489.7 shaft horsepower is quite 

large. But upon analysis of the modular submarine model, there are three uncontrolled 

variances that effect the accuracy of the model fit. They are as follows: 

• 

• 

Propulsive coefficient: this value was not held constant and is modeled as 
a function of the size and shape of the hull. 

Appendage area: The model increases the appendage area as the size of 
the submarine increases. 

Weight-limiting versus volume-limiting design: Some designs are weight 
limiting; others are volume limiting. 

4.1.2 Cost Response Model 

A cost response model is created as a function of the following factors: 

submerged speed, test depth, diameter, and payload length. The analysis of the fitted 

model is shown in Table 9 and 10 and Figure 10. As shown in Table 9, the "Prob > F" is 

less than 0.001, indicating the model is statistically significant and is an excellent 

predictor of cost (assuming the cost model is correct) with a standard deviation of 

$65.804 million (the units in Figure 10 is million of dollars). Examining the coefficients 

in Table 10, the big cost driver is the payload length, followed by the submerged speed 

and test depth. 

This chapter will redo this analysis using the complete methodology outlined in 

Chapter Two. The analysis will produce a better model with a smaller standard 

deviation. 
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Analysis of Variance 
Source DF   Sum of Squares Mean Square F Ratio 

Model 14            3169393.6 226385 52.2803 

Error 12                51962.6 4330 Prob > F 

C. Total 26             3221356.2 <.0001 

Table 9: Cost Response Model Analysis of Variance 
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Figure 10: Cost Response Model Leverage Plot 

Scaled Estimates 
! 

Term 

Intercept 

Scaled Estimate Std Error 

37.99219 

t Ratio 

40.54 

Prot»|t| 

<.0001 1540.32 :             :   ■ 
Diameter(38,42)&RS 89.265 i                  ^^_' 18.99609 4.70 0.0005 

Depth(500,1100)&RS 243.495; 18.99609 12.82 <0001 

Speed(24,32)&RS 261 rmi7                            t 18.99609 13.74 <0001 

Payload(43,88)&RS 337.69417 \   [          \ 18.99609 17.78 <0001 

Diam eter(38,42)*Dep1h(500,1100) 22.12251  :   :   ;  ;   1 329022 0.67 0.5141 

Diam eter(38,42)*Speed(24,32) 32.095           : 1; ■ ■ ■ 329022 0.98 0.3486 

Deptb(500,1100)*Speed(24,32) 60-915                    1 329022 1.85 0.0889 

Diameter(38,42)*Payload(43,88) 30.0625 :                 r   . 329022 0.91 0.3789 

Depth(500,1100)*Payload(43,88) 87.7075:                 H 32.9022 2.67 0.0206 

Speed(24,32)*Payload(43,88) 108.3925                     I 32.9022 3.29 0.0064 

Diameter(38,42)*Diameter(38,42) 18.374167                    r^'   . 28.49414 0.64 0.5312 

Depth(500,1100)*Depth(500,1100) 29.346667 ;       '           L 28.49414 1.03 0.3234 

Speed(24,32)*Speed(24,32) 113.80792 :   ,              H  ' 28.49414 3.99 0.0018 

Payload(43,88)*Payload(43,88) 13.257917                   | 28.49414 0.47 0.6501 

Table 10: Cost Response Model Coefficients 
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4.1.3 GMt Response Model 

A GMt response model is created as a function of the following factors: 

submerged speed, test depth, diameter, and payload length. The analysis of the model is 

shown in Table 11 and Figure 11. The Analysis of Variance has "Prob > F" at 0.0496, 

indicating that the fitted model is marginal as a predictor. Figure 11 also indicates a poor 

fit. Therefore, there are uncontrolled variances that have not been accounted for, which 

should be either held constant or modeled in Equation (1). To improve upon the model 

fit, the designer would need to examine all possible factors that could effect GMt, and 

then perform the screening experiment to determine the critical factors. 

Analysis of Variance 
Source DF   Sum of Squares Mean Square F Ratio 

Model 14            0.01138241 0.000813 2.6428 

Error 12            0.00369167 0.000308 Prob > F 

C. Total 26            0.01507407 0.0496 

Table 11: GMt Response Model Analysis of Variance 

Actual by Predicted Plot 
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Figure 11: GMt Response Model Leverage Plot 
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4.1.4 Design Space Analysis 

Using the JMP   software, the designer can use the contour profiler (Figure 12), 

which is an interactive contour profiling tool used to optimize the response surfaces 

graphically. Figure 12 is used to examine dynamically how the four factors impact the 

response. Two of the four factors are selected as the x-axis (test depth) and the y-axis 

(submerged speed). The other two are fixed: diameter at 40 ft and the payload length at 

64.0 ft. In this example, the cost response contour is set at an upper limit of $2.0 billion. 

Therefore, if the designer is given a cost constraint of $2.0 billion, the shaded portion of 

the graph represents a portion of the design space that exceeds the $2.0 billion limit 

thereby reducing the feasible design space. The shaft horsepower contour is set at 

30,000. By visually examining the graph, and by keeping the shaft horsepower constant, 

the submarine will lose about 1.5 knots as the test depth increases from 500 to 1100 ft. 

Figure 12: Hanson and Hunt Contour Profiler 
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The extra volume response in Figure 12 represents the additional volume added to 

the design when the submarine is weight limited. As shown in this figure, the extra 

volume contour is set at zero and represents the transition from a volume-limited to a 

weight-limited design. This indicates that the modular submarine module is, for the most 

part, a weight-limited design (in the specified design space). 

Once created, the contour profiler allows the designer to examine an infinite 

number of designs within the design space. The ability to dynamically change the design 

factors and examine the impact on the response is a powerful tool. The designer can now 

perform trade-off studies instantly and determine the impact of changing a design factor. 

Just as important, the designer can input the design constraints (i.e. a cost limit as in 

Figure 12) and examine the potential design variants in the remaining feasible design 

space, if any. The importance of using the contour profiler for trade-off studies will be 

illustrated later in the chapter. 

4.2 Cost Response Model 

In Section 4.1.2, a cost response model is generated as a function of the factors 

submerged speed, test depth, diameter, and payload length. Figure 10 illustrates the 

results of the model fit: RSq of 0.98 and a standard deviation of $65,804 million. As 

described earlier, the factors were specified (a screening experiment was not conducted), 

and a Box-Behnken design is used to create the response surface. This section will now 

perform the methodology outlined in Chapter Two, and the analysis will result in an 

improved cost model. 
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4.2.1 Factor Selection 

Since the modular submarine model uses weight-based Cost-Estimating Ratios 

(CER), the key to identification of the factors are those that drive the different weight 

groups. The selected factors for the cost response are as follows: 

Group 1 (hull structure): test depth and payload length 
Group 2 (propulsion machinery): shaft horsepower requirement 
Group 3 (electric plant): shaft horsepower requirement 
Group 4 (communications and control): held constant 
Group 5 (auxiliary systems): held constant 
Group 6 (outfit and furnishings): held constant 
Group 7 (armament or payload): payload length and diameter 

Therefore, the selected factors are test depth, payload length, shaft horsepower, and 

diameter. These factors are identical to Section 4.1.2, except for shaft horsepower. This 

section uses shaft horsepower which is directly related to the Group 2 and 3 weights. On 

the other hand, Section 4.1.2 used submerged speed, which is a function of many design 

parameters, including shaft horsepower. The selection of shaft horsepower rather than 

submerged speed will improve the model fit. 

4.2.2 Screening Experiment 

A full factorial design matrix is selected to examine the main effects and factor 

interactions and to determine" if they are statistically significant. The full factorial with 

four factors only requires 16 variants. The selected factor levels are shown in Table 12, 

and Appendix B contains the full factorial design matrix annotated with the factor levels 

and the cost response. When picking the factor levels, one should pick in the design 
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range of interest. In this case, the levels are selected to produce a weight-limiting 

concept design within the entire design space. 

Factor -1 +1 
Test Depth (ft) 700 1100 
Payload length (ft) 65 85 
Shaft horsepower 20000 50000 
Diameter 38 42 

Table 12: Cost Response Screening Experiment Factor Levels 

The results of the screening experiment are shown in Figure 13 and Table 13. 

The prediction profiler, Figure 13, is a graph of the predicted response (on the y-axis) as 

one factor (on the x-axis) is changed while the others are held constant at their current 

levels. Since a two-level screening experiment is conducted, a linear function is 

obtained. The steepness, or slope, is a measure of the factor effect on the response. By 

visual inspection of Figure 13, the shaft horsepower has the largest impact on the cost, 

while the diameter has the least impact. Once again, the results will vary if the range for 

the factors change, so it is critical to carefully select the proper range for each factor. The 

shaft horsepower range is from 20,000 to 50,000, and this large range explains its impact 

on the cost response. On the other hand, the diameter has a small range from 38 to 42 ft 

and therefore has a minimal impact on the response, as compared to the other factors.' 

The key is to select the range for each factor to correspond to the design space of interest. 
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Depth(700,1100)   Rayload(65,85) SHP(20000,50000)Diameter(38,42) 

Figure 13: Cost (Screening Experiment) Prediction Profiler 

Scaled Estimates 
Term 

Intercept 

Scaled Estimate Std Error t Ratio 

3180.70 

Prob>|t| 

<0001 1920.5994 ■■ 0.60383 
Depth(700,1100) 168.93563 \ WT 0.60383 279.77 <0001 
Payload(65,85) 120.22312 ■ i: 0.60383 199.10 <0001 
SHP(20000,50000) 294.62313 >■ 0.60383 487.92 <0001 
Diameter(38,42) 86.986875 i   i 

i   i 0.60383 144.06 <0001 
Depth(700,1100)*Payload(65,85) 14.006875 i   i 

i   i 0.60383 23.20 <0001 

Depth(700,1100)*SHP(20000,50000) 19.059375 ; ; 0.60383 31.56 <.0001 
Payload(65,85)*SHP(20000,50000) 0.066875 t  t ■ i 0.60383 0.11 0.9161 
Depth(700,1100)*Diameter(38,42) 9.973125 I; ■ i 0.60383 16.52 <0001 
Payload(65,85)*D'ameter(38,42) 11.475625 \ i i 0.60383 19.00 <0001 
SHP(20000,50000)*Diameter(38,42) 0.045625 i   i i i 0.60383 0.08 0.9427 

Table 13: Cost (Screening Experiment) Results 

The t Test results for the screening experiment are shown in Table 13. Examining 

the "Prob > |t|" column, all factor and two-way interactions are statistically significant, 

except for the two-way interactions (payload length * shaft horsepower) and (shaft 

horsepower * diameter). All-four factors will be used to develop the cost response 

surface. 
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4.2.3 Response Surface 

A cost response surface is created using the Central Composite design. With four 

factors, the selected Central Composite design requires 26 variants to accurately model 

the design space. To capture the quadratic curvature, three levels per factor (see Table 

14) are used. Appendix C contains the design matrix annotated with the factor levels and 

the cost response. The results are shown in Table 15 and 16, and Figures 14 and 15. 

Factor [    -1 0 +1 
Test depth (ft) 700 900 1100 
Payload length (ft) 65 76.5 88 
Shaft horsepower 20000 35000 50000 
Diameter (ft) 38 40 42 

Table 14: Cost Response Curve Factor Levels 

The results of the cost model fit are excellent. The Analysis of Variance, Table 

15, has a "Prob > F" of less than 0.0001 and the RSq, figure 14, is 1.00. With a $3.4762 

million standard deviation, the results of this section are much improved compared to the 

Hanson and Hunt $65.804 million standard deviation. Table 16 and Figure 15 show the 

effect of each factor and their interactions on the cost response surface model. Note that 

the curvature in Figure 15 is due to using three-level factors to create the quadratic 

response surface. Examination of Table 16 shows that the main effects are the drivers-for 

cost. Although the factor interactions are statistically significant (except for payload 

length* shaft horsepower and diameter * shaft horsepower, same as the screening 

experiment), they do not have the impact that the main effects have on the cost response 

model. 
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Analysis of Variance 
i 

Source DF   Sum of Squares Mea n Squa re F Ratio 

Model 14             2650424.1 189316 15667.01 

Error 11                     132.9 12 Prob > F 

C. Total 25              2650557.1 <0001 

Table 15: Cost Response Model Analysis of Variance 

Actual by Predicted Plot 
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Figure 14: Cost Response Model Leverage Plot 

Scaled Estimates 

Term 

Intercept 

Scaled Estimate Std Error t Ratio 

1321.29 

Prob>|t| 

<0001 1820.7287 ^m 1.377996 

Depth(700,1100)&RS 170.26778 
:   M^ 0.81934 207.81 <0001 

Payload(65,88)&RS 138.04722 ;   m   ' 0.81934 168.49 <0001 

ShP(20000,50000)&RS 294.42889 ■■ 0.81934 359.35 <0001 

Diameter(38,42)&RS 88.587778 : ;; WTT\ 0.81934 108.12 <0001 

Depth(700,1100)*Payload(65,88) 16.085625 ; ; ; F ; : 0.869042 18.51 <0001 

Depth(700,1100)*SHP(200 00,50000) 19.058125 : : ;   I: ; : : 0.869042 21.93 <0001 

Payload(65,88)*SHP(20000,50000) 0.063125 :       i       1      .       i       1      1       I       , 0.869042 0.07 0.9434 

Depth(700,1100)*Diameter(38,42) 10.171875 i ; ! ; 1 ; : : : 0.869042 11.70 <0001 

Payload(65,88)*Diameter(38,42) 13.196875 1 0.869042 15.19 <0001 

SHP(20000,50000)*Diameter(38,42) 0.051875 0.869042 0.06 0.9535 

Depth(700,1100)*De pth(700,1100) 15.916714 : : |: : , 2.172191 7.33 <0001 

Payload(65,88)*Payload(65,88) 0.1417143 '.':'..,','■',': 2.172191 0.07 0.9492 

SHP(20000,50000)*SHP(20000,50000) 99.496714 '    ■: : , 2.172191 45.80 <.0001 

Dtameter(38,42)*Diameter(38,42) 2.3567143 \:.'.',       '.   1   1       i   2.172191 1.08 0.3012 

Table 16: Cost Response Model Coefficients 
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Figure 15: Cost (Response Surface) Prediction Profiler 

4.3 Submerged Displacement Response Model 

Since the cost response model is based on weight Cost Estimating Ratios, the 

factors for a submerged displacement response model are identical to the cost response 

model as long as the concept designs are weight limited. Using the same Central 

Composite design matrix (see Appendix C), a submerged displacement response model is 

generated. The results are displayed in Tables 17 and 18, and Figure 16. 

Similar to the cost response model, the submerged displacement response model 

is an excellent fit. The Analysis of Variance, Table 17, has a "Prob > F" of less than 

0.0001 and the RSq, Figure 16, is 1.00. The model can accurately predict the submerged 

displacement with a standard deviation of 26.958 ltons. The model coefficients, Table 

18, have the same relative magnitude as the coefficients for the cost response surface 

model. The main effects of test depth, payload length, shaft horsepower, and diameter 

are the key drivers for the submerged displacement. 
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Analysis of Variance 

Source DF   Sum of Squares Mean Square F Ratio 

Model 14             103892891 7420921 10211.44 

Error 11                      7994 727 Prob>F 

C. Total 25             103900885 <0001 

Table 17:Submerged Displacement Response Model Analysis of Variance 
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Figure 16: Submerged Displacement Response Model Leverage Plot 

Scaled Estimates 

Term Scaled Estimate 

Intercept 11398.227 

Depth(700,1100)&RS 1310.7556 

Payload(65,88)&RS 1024.7611 

SHP(20000,50000)&RS 1558.5611 

Diameter(38,42)&RS 639.09444 

Depth(700,1100)*Payload(65,88) 124.20625 

Depth(700,1100)*SHP(20000,50000) 146.10625 

Payload(65,88)*SHP(20000,50000)" 0.25625 

Depth(700,1100)*Diameter(38,42) 78.51875 

Pay load(65,88)*Diameter(38,42) 94.61875 

SHP(20000,50000)*Diameter(38,42) 0.29375 

Depth(700,1100)*Depth(700,1100) 122.91381 

Fayload(65,88)*Payload(65,88) 0.6638095 

SHP(20000,50000)*SHP(20000,50000) 526.16381 

Diameter(38,42)*Dameter(38,42) 17.26381 

I 1 

Std Error t Ratio 

10.68643 1066.61 

6.354028 206.29 

6.354028 161.28 

6.354028 245.29 

6.354028 100.58 

6.739465 18.43 

6.739465 21.68 

6.739465 0.04 

6.739465 11.65 

6.739465 14.04 

6.739465 0.04 

16.84545 7.30 

16.84545 0.04 

16.84545 31.23 

16.84545 1.02 

Prot»|t| 

<0001 

<0001 

<0001 

<0001 

<0001 

<0001 

«.0001 

0.9704 

<0001 

<0001 

0.9660 

<0001 

0.9693 

<.0001 

0.3275 

Table 18: Submerged Displacement Response Model Coefficients 
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4.4 Length Response Model 

Since the modular submarine model is a weight-limiting design (in the design 

space of interest), the factors for the length response model are identical to the submerged 

displacement model. Using the same Central Composite design matrix (see Appendix C), 

a length response model is generated. The results are displayed in Tables 19 and 20, and 

Figure 17. The length response model can accurately predict the length with a standard 

deviation of 1.0396 ft. 

4.5 Submerged Speed Response Model 

This section will develop the response surface for the submerged speed. Since 

there are numerous factors that can impact speed, the application of the methodology 

outlined in Chapter Two will aid the designer in determining the critical factors and 

which critical factors have the greatest impact on the submerged speed. The designer can 

then use the subset (which have the greatest impact on the submerged speed) of critical 

factors for further study. This will be illustrated in this section. 

4.5.1 Factor Selection 

The first step is to determine the potential factors that may have an impact on the 

submerged speed. The factors can be categorized as follows: hull form, hull size, and the 

installed propulsion system. 

66 



Analysis of Variance 

Source DF   Sum of Squares Mean Square F Ratio 

Model 14             88463.630 6318.83 5283.954 

Error 11                    13.154 1.20 FTob>F 

C. Total 25             88476.785 <.0001 

Table 19: Length Response Model Analysis of Variance 

Actual by Predicted Plot 
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Figure 17: Length Response Model Leverage Plot 

Scaled Estimates 

Term 

Intercept 

Scaled Estimate Std Error t Ratio 

986.97 

Prob>|t| 

<0001 427.84857 71  P 0.433497 
Depth(700,1100)&RS 38.477778 IF 0.257752 149.28 <0001 
Payload(65,88)&RS 31.722222 

; IE. 0.257752 123.07 <.0001 
SHP(20000,50000)&RS 46 J m 0.257752 178.47 <0001 
Diameter(38,42)&RS -12.35556 ■ 11 0.257752 -47.94 <0001 

Depth(700,1100)*Pay load(65,88) 3.6375 ■ i 
11 0.273388 13.31 <0001 

Depth(700,1100)*SHP(20000,50000) 4.325 11 0.273388 15.82 <0001 

Rayload(65,88)*SHP(20000,50000) -0.0125 11 

li 
0.273388 -0.05 0.9644 

Depth(700,1100)*Diameter(38,42) -1.5625 0.273388 -5.72 0.0001 

Payload(65,88)*Q'ameter(38,42) -0.225 i i 0.273388 -0.82 0.4280 

SHP(20000,50000)*Diameter(38,42) -4.5875 I 0.273388 -16.78 <0001 

Depth(700,1100)*Depth(700,1100) 3.6685714 1: 0.683339 5.37 0.0002 
Ray load(65,88)*Pay load(65,88) 0.0685714 t  i 0.683339 0.10 0.9219 

SHP(20000,50000)*SHP(20000,50000) 15.468571 m 0.683339 22.64 <.0001 
Diameter(38,42)*Diameter(38,42) 1.1685714 F 0.683339 1.71 0.1153 

Table 20: Length Response Model Coefficients 
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For a body of revolution, the hull form is determined by the length, diameter, and 

two form factors (entrance and run form coefficient) [12]. Therefore, the selected factors 

are the diameter, and the entrance and run form coefficients. Length is not selected as a 

factor because it must vary (a response) to account for varying submarine sizes. In 

addition, attached to the hull will be the sail and numerous appendages. This can be 

modeled by representing the sail and appendages with an equivalent area. Therefore, the 

additional factors are the sail and appendage areas. 

The hull size is equivalent to the submerged displacement. Therefore, from 

section 4.3, the factors are test depth, installed shaft horsepower, payload length and 

diameter. 

Finally, the propulsion system can be defined by numerous factors. Yet within 

the modular submarine model, the installed shaft horsepower and the propulsive 

coefficient (PC) determine the installed propulsion system. 

In summary, Table 21 lists the selected factors for the screening experiment. 

Factor -1 +1 
Diameter 38 42 
Forward form coefficient 1.75 3.5 
Aft form coefficient 1.75 4.0 
Shaft horsepower 45000 50000 
PC 0.79 0.85 
Sail area 285 575 
Appendage area 2000 3500 
Depth 700 1100 
Payload length 65 88 

Table 21: Submerged Speed Screening Experiment Factor Levels 
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4.5.2 Screening Experiment 

The rational for the factor levels is as follows: If the current concept design has a 

PC of 0.79 and the designer is informed that a PC of 0.85 is possible, but at a specified 

cost, then the range is 0.79 to 0.85, as shown in Table 21. This will allow the designer to 

see if PC is a critical factor or not. If it is, then the designer can further evaluate the 

possibility of increasing the PC value at the additional cost by using the response surface. 

If, on the other hand, it is determined that PC is not a critical factor, then the designer can 

spend his effort and money on the other factors that do have an impact. The same 

rational is applied to the remaining factors, except for shaft horsepower. This is a critical 

factor for submerged speed and has a dramatic impact. To examine the relative effects of 

the other factors, the shaft horsepower levels are chosen to reduce the impact of this 

factor on the response. Therefore, the shaft horsepower levels are from 45,000 to 50,000. 

At this level, the effect of shaft horsepower is much less than going from 0 to 5,000. 

To perform the screening experiment, a fractional factorial design matrix, 

resolution IV, is selected. The resolution IV design will ensure the main effects are not 

confounded with the two-way interactions, but the two-way interactions will be 

confounded with other two-way interactions. A fractional factorial with nine factors 

requires 32 variants, and Appendix D contains the design matrix annotated with the factor 

levels and the submerged speed response. The results are displayed in Figure 18 and 19, 

and Table 22. 
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Mgure 18: Submerged Speed screening experiment Prediction Frotiler (VIZ) 
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Figure 19: Submerged Speed Screening Experiment Prediction Profiler (2/2) 

The prediction profilers, Figure 18 and 19, show that the main effects of test 

depth, shaft horsepower, payload length, appendage area, and PC have the largest impact 

on the submerged speed. Based on this visual examination, the following factors have 

been selected to create the response surface: test depth, shaft horsepower, payload length, 

and PC. The appendage area is not selected since the size of the control surfaces is 

determined by other factors. The other factors not selected for creating the response 

surface are all statically significant, as shown in Table 22, but they do not have the 

impact on the submerged speed as the selected factors. This example illustrates the 
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importance of the screening experiment; the designer can focus on the design parameters 

that are statistically significant and have the largest impact within the design space of 

interest. 

Table 22 shows the results of the t Test for the main effects and all two-way 

interactions (not shown are the three-way interactions, which are not statistically 

significant). Even though some of the two-way interactions are statistically significant, 

none have the same impact on the response as the main effects. 

Scaled Estimates 
Term 

Intercept 

Scaled Estimate Std Error t Ratio 

82067.19 

Prob>|t| 

<0001 30.775187 :    ■ 0.000375 
Diameter(38,42) -0.085562 ÜI: 0.000375 -228.17 0.0028 
Depth(700,1100) -0.806251 ■K. 0.000375 -2150.00 0.0003 
SHP(45000,50000) 0.28725 TTTT 0.000375 766.00 0.0008 
PL(65,85) -0.541438 ■if: 0.000375 -1443.83 0.0004 
Entranced. 75,3.5) 0.0379375 0.000375 101.17 0.0063 
Run( 1.75,4) 0.06625 0.000375 176.67 0.0036 
SailArea(285,575) -0.080625 0.000375 -215.00 0.0030 
AppArea(2000,3500) -0.349187 0.000375 -931.17 0.0007 
PC(0.79,0.85) 0.3881875 0.000375 1035.17 0.0006 
Diameter(38,42)*Depth(700,1100) 0.003 0.000375 8.00 0.0792 

Diameter(38,42)*SHP(45000,50000) 0.013 0.000375 34.67 0.0184 
Diameter(38,42)*PL(65,85) -0.020063 f ! 0.000375 -53.50 0.0119 

DiarrBter(38,42)*Entrance( 1.75,3.5) 0.0034375 0.000375 9.17 0.0692 
Diameter(38,42)*Run( 1.75,4) 0.006125 0.000375 16.33 0.0389 
Diameter(38,42)*Sail Area(285,575) 0.00025 0.000375 0.67 0.6257 
Diameter(38,42)*App'Area(2000,3500) 0.0033125 0.000375 8.83 0.0718 
Diameter(38,42)*PC(0.79,0.85) -0.000188 0.000375 -0.50 0.7048 
Depth(700,1100)*SHP(45000,50000) -0.017437 0.000375 -46.50 0.0137 
Depth(700,1100)*PL(65,85) 0.0015 0.000375 4.00 0.1560 
Depth(700,1100)*Entrance(1.75,3.5) -0.0035 0.000375 -9.33 0.0680 
Depth(700,1100)*Run(1.75,4) -0.005062 0.000375 -13.50 •0.0471 
Depth(700,1100)*Sail Area(285,575)' 0.0021875 

li 
0.000375 5.83 0.1081 

Depth(700,1100)*App Area(2000,3500) 0.0335 0.000375 89.33 0.0071 

Cepth(700,1100)*PC(0.79,0.85) 0.00725 0.000375 19.33 0.0329 

SHP(45000,50000)*Entrance( 1.75,3.5) -0.0075 0.000375 -20.00 0.0318 
SHP(45000,50000)*Run( 1.75,4) -0.004437 ■ i 0.000375 -11.83 0.0537 

SHP(45000,50000)*SailArea(285,575) 0.0258125 ; 0.000375 68.83 0.0092 

SHP(45000,50000)*AppArea(2000,3500) 0.0115 I; 0.000375 30.67 0.0208 

Entrance(1.75,3.5)*Sail Area(285,575) -0.005125 
11 
11 0.000375 -13.67 0.0465 

Entrance(1.75,3.5)*AppArea(2000,3500) -0.003687 
11 

0.000375 -9.83 0.0645 

Table 22: Submerged Speed Screening Experiment Results 
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4.5.3 Response Surface 

A submerged speed response surface is created using the Central Composite 

design. With four factors, the selected Central Composite design requires 26 variants to 

accurately model the design space. To capture the quadratic curvature, three levels per 

factor (see Table 23) are used. Appendix E contains the design matrix annotated with the 

factor levels and the cost response. The results are shown in Table 24 and 25, and Figure 

20. 

Factor -1 0 +1 
Test depth (ft) 700 900 1100 
Payload length (ft) 65 76.5 88 
PC 0.79 0.82 0.85 
Shaft horsepower 20000 35000 50000 

Table 23: Submerged Speed Model Factor Levels 

The results of the submerged speed model fit are excellent. The Analysis of 

Variance, Table 24, has a "Prob > F" of less than 0.0001 and the RSq, figure 20, is 1.00. 

This submerged speed model is an excellent predictor of speed with a standard deviation 

of 0.0263 knots. As seen in Table 25, the main effects are the drivers for submerged 

speed. Although some of the factor interactions are statistically significant, they do not 

have the same impact on submerged speed as the main effects. 
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Analysis of Variance i 

Source         DF   Sum of Squares Mean Square F Ratio 

Model            14            228.28108 16.3058 23486.4 
Error             11                 0.00764 0.0007 Prob > F 
C. Total        25            228.28872 <0001 

Table 24: Submerged Speed Response Model Analysis of Variance 

Actual by Predicted Plot 

20.0 22.5 25.0 27.5 30.0 32.5 

Speed Predicted P<0001 RSq=1.00 

RMSE=0.0263 

35.0 

Figure 20: Submerged Speed Response Model Leverage Plot 

! Scaled Estimates 
I 

Term 

Intercept 

Scaled Estimate 

28.451 786 

Std Error 

|   0.010445 

t Ratio 

2723.95 

Prob>|t| 

<0001 ■^P 
Depth(700,1100)&RS -0.817111 m 0.00621 -131.57 <0001 
Payload(65,88)&RS -0.675 v !     0.00621 -108.69 <0001 
PC(0.79,0.85)&RS 0.3468889 L- i         0.00621 55.86 <0001 
SHP(200 00,50000 )&RS 3.33 ■i ■1     0.00621 536.19 <0001 
Dep th(700,1100)*Pa yload (6 5,88) 0.0068125 :        I                          .        ,        ■ 

i   0.006587 1.03 0.3232 
Depth(700,1100)*PC(0.79,0.85) -0.010313 '   :   0.006587 -1.57 0.1458 
Payload(65,88)*Pq0.79,0.85) -0.008563 ;   I   0.006587 -1.30 0.2202 
Depth(700,1100)*SHP(20000,50000) -0.097188 l 0.006587 -14.75 <0001 
Payloa d(65,88)*SHP(20000,5 0000) -0.005187 0.006587 -0.79 0.4476 

PC(0.79,0.85)*SHP(20000,50000) 0.0419375 l 0.006587 6.37 <0001 
Depth(700,1100)*Depth(700,1100) -0.028548 0.016465 -1.73 0.1108 
Payload(65,88)*Pa yload (65,88) 0.0384524 l 0.016465 2.34 0.0395 
PC(0.79,0.85)*PC(0.79,0.85) -0.004548 0.016465 -0.28 0.7875 
SHP(20000,50000)*SHP(20000,5 0000) -1.053548 ■              ' :   0.016465 -63.99 <0001 

Table 25: Submerged Speed Response Model Coefficients 

73 



With the submerged speed response surface created, the designer can now easily 

perform trade-off studies. Using the contour profiler in JMP®, Figure 21, the designer 

can dynamically examine an infinite number of feasible solutions. With the contour 

profiler the designer can change the four factors (shaft horsepower, test depth, payload 

length, and PC) and examine their impact on the submerged speed. For instance, if the 

speed requirement is 28.0 knots, the designer, via the contour profiler, can easily 

determine the shaft horsepower requirements for any combination of payload length, test 

depth, and PC. In this figure, an additional 7,000 shaft horsepower is required to change 

test depth from 700 to 1100 ft and maintain the submerged speed at 28.0 knots. If the 

required shaft horsepower at 1100 ft is too high, then the designer can reduce the payload 

length or increase PC to reduce the required shaft horsepower to the required level. 

o 
o 
o o 
LO 

CO 

o 
o 
o o 
CM 

Payload Length = 76.5 ft 
PC = 0.80 

Speed contour set at 28.0 knots 

700 Depth(700,1100) 1100 

Figure 21: Submerged Speed Contour Profiler 
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4.6 OMOE Response Model 

One method to optimize a concept design and perform trade-off studies is via the 

Pareto plot. To apply RSM, the designer will need to develop a response surface for both 

the cost and OMOE. In section 4.2 a response curve is generated for cost. This section 

will examine the development of an OMOE response surface. 

Starting with an OMOE, the designer needs to reduce the OMOE to a function of 

factors. Using the OMOE from Hanson and Hunt, we have 

OMOE = fn(test depth) + fn{payload length) + fn(submerged speed) .      (4) 

In Section 4.5, a response curve is developed for the submerged speed as a function of the 

factors test depth, payload length, PC, and shaft horsepower. Therefore, Equation (4) is 

reduced to the following 

OMOE = fnitest depth, payload length, PC, shaft horsepower). (5) 

Using Equation (5), an OMOE response surface is created using the Central Composite 

design. The results are shown in Table 26 and 27, and Figure 22 and indicate an 

excellent model fit. As seen in Table 27, the payload length is the driver for the OMOE, 

followed by shaft horsepower and test depth. 
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Analysis of Variance 

Source DF   Sum of Squares Mean Square F Ratio 

Model 14             1.2093301 0.086381 38817.67 

Error 11             0.0000245 0.000002 Prob>F 

C. Total 25              1.2093546 <0001 

Table 26: OMOE Response Model Analysis of Variance 

Actual by Predicted Plot 

u.y- 

0.8- 

0.7- 

§0.6- 

30.5- 
o0.4- 

O0.3- 

0.2- 

0.1- 

U I       1       I       i       I       i       i       i 
.0     .1     .2     .3     .4     .5     .6     .7     .8     .9 

OMOERedicted P<0001 RSq=1.00 

RMSE=0.0015 

Figure 22: OMOE Response Model Leverage Plot 

Scaled Estimates 
Term 

Intercept 

Depth(700,1100)&RS 

Payload(65,88)&RS 

SHP(20000,50000)&RS 

Diameter(38,42)&RS 

Depth(700,1100)*Payload(65,88) 

Depth(700,1100)*SHP(20000,50000> 

Rayload(65,88)*SHP(20000,50000) 

Depth(700,1100)*Diameter(38,42) 

Payload(65,88)*Diameter(38,42) 

SHP(20000,50000)*Diameter(38,42) 

Depfli(700,1100)*Depth(700,1100) 

Rayload(65,88)*Payload(65,88) 

SHP(20000,50000)*SHP(20000,50000) 

Diameter(38,42)*Diameter(38,42) 

Scaled Estimate 

0.5045668 

0.0265937 

0.1926272 

0.1685787 

-0.007121 

0.0003464 

-0.004939 

-0.000282 

0.0002758 

-0.000853 

0.0021487 

-0.001462 

0.0019499 

-0.053365 

-0.000462 

. 

Std Error 

0.000591 

0.000352 

0.000352 

0.000352 

0.000352 

0.000373 

0.000373 

0.000373 

0.000373 

0.000373 

0.000373 

0.000932 

0.000932 

0.000932 

0.000932 

t Ratio 

853.25 

75.63 
547.85 

479.45 

-20.25 
0.93 

-13.24 
-0.76 
0.74 

-2.29 

5.76 

-1.57 
2.09 

-57.25 

-0.50 

Prob>|t 

<0001 

<0001 

<0001 

<0001 

<0001 

0.3730 

<0001 

0.4651 

0.4751 

0.0430 

0.0001 

0.1450 

0.0605 

<0001 

0.6301 

Table 27: OMOE Response Model Coefficients 
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4.7 Design Space Trade-off Study 

This chapter has generated a response surface for cost, submerged displacement, 

length, submerged speed, and OMOE. Using the contour profiler, the designer can now 

efficiently perform trade-off studies and examine the impact of the design factors on the 

submarine design. 

In Figure 23, the designer has used the test depth factor as the x-axis and the shaft 

horsepower factor as the y-axis. The three other factors have been set as shown in Figure 

23. If the designer has a cost constraint of $2.0 billion and a minimum speed requirement 

of 28 knots, then the contour profiler can be used to set the corresponding constraints as 

shown in Figure 23. The net effect of the two constraints is a reduction in the feasible 

design space. 

o o 
o o m 

o o o o 
in 
o" 
o 
o o 

o o 
o 
o 
CM 

Feasible design space 

700 Depth(700,1100) 1100 

Factors 
PC = 0.79 
Payload = 65 ft 
Diameter = 38 ft 

Response Constraints 
Cost< $2.0 billion 
Speed > 28 knots 

Figure 23: Trade-Off Analysis Part 1 
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To examine the impact of the diameter and pay load length, both factors are 

increased to the maximum value as shown in Figure 24. The two combine to reduce the 

feasible design space. 

Factors 
o o PC = 0.79 
o o Payload = 88 ft 
lO 

Diameter = 42 ft 

o Response Constraints 
o 
o Cost< $2.0 billion 

o~ o 
* — ̂ ^B Speed > 28 knots 

o o 
CM 

X 

o o o o 
CM 

700 Depth(700,1100) 1100 

Figure 24: Trade-Off Analysis Part 2 

Using the OMOE response, the designer can now determine the optimal OMOE at 

the cost constraint of $2.0 billion. Using the contour profiler, Figure 25, the designer 

continues increasing the OMOE response contour until the contour just touches the $2.0 

billion cost contour. As shown in Figure 25, the optimal OMOE at this point is 0.72. 

Now the designer can change the other factors to determine if it is possible to increase the 

OMOE even further. Since the payload length is at the max value of 88 ft, the diameter is 

evaluated next. 
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Factors 
PC = 0.79 
Pay load = 88 ft 
Diameter = 42 ft 

Response Contours 
Cost = $2.0 billion 
Speed = 28 knots 
OMOE = 0.72 

Figure 25: Trade-Off Analysis Part 3 

In Figure 26, the diameter is reduced to 38 ft, resulting in an increase in the 

OMOE to a value of 0.784. This is the optimal OMOE with the $2.0 billion cost 

constraint. In addition, as shown in Figure 27, reducing the diameter has increased the 

feasible design space. The designer has not only determined the optimal OMOE, but he 

has also mapped out the feasible design space. 

With the overhead of creating the response surfaces, the designer has just 

determined the optimal concept design in a matter of seconds. And if the OMOE 

weightings change due to new customer preferences, the designer can update the JMP® 

file and, once again, determine the optimal OMOE in seconds. The ability to optimize 

the concept design is the benefit of combining RSM, a submarine model, and a statistical 

software package. The previous concept design methods outlined in Chapter One cannot 

efficiently perform the analysis conducted in this chapter. 
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Figure 26: Trade-Off Analysis Part 4 
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Factors 
PC = 0.79 
Payload = 88 ft 
Diameter = 38 ft 

Response Constraints 
Cost< $2.0 billion 
Speed > 28 knots 

Figure 27: Trade-Off Analysis Part 5 
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Now if the designer is told to develop a concept design with the following 

characteristics 

• Submerged speed > 28.0 knots, 
• Cost < $2.0 billion, 
• Submerged Displacement < 10,000 ltons, 

then the designer enters in the new constraints into the program. As shown in Figure 28, 

the net result of the constraints is that there are no feasible concept designs that meet all 

the requirements. The only option is to reduce the payload length or increase PC. Now 

the fun begins! 

Factors 
o o II PC = 0.79 o o ^^^^^^^H Payload = 88 ft 

Diameter = 38 ft 

o o o o m 
^^^^^^H Response Constraints 

Cost< $2.0 billion 
o o o o 
CM 

X 
CO 
^^^1 Speed > 28 knots 

Submerged Displacement 
< 10,000 ltons 

o o o o 
CM 
^^^^H 
700                Depth(700,1100)              1100 

Figure 28: Trade-Off Analysis Part 6 
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Chapter 5: Conclusions 

Present submarine concept exploration is accomplished by either the one-factor- 

at-a-time design approach or the Pareto plot. Either method is guided primarily by past 

experience, rules-of-thumb, and designer preference. As described in Chapter One, this 

approach is ad hoc, not efficient, and may not lead to an optimum concept design. 

Furthermore, once the designer has a "good" concept design, he has no process or 

methodology to determine whether an improved concept design is possible or not. To 

improve upon current practices, a methodology is needed to formalize the design process 

and connect the customer preferences into the design process. As shown in this thesis, 

RSM can accomplish (and even surpass) this challenge. 

5.1 A New Concept Design Process 

To optimize the concept design, this thesis applies RSM to a basic submarine 

concept design. The methodology of RSM decomposes a complex design into a set of 

critical factors that can be used to model the responses of interest. The designer selects 

the responses he would like to model and determines the critical factors for each. Then 
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by applying RSM, the designer creates a response surface, which represents all feasible 

designs within the specified design space. 

Using the methodology outlined in Chapter Two, a response surface was created 

for submerged speed, submerged displacement, length, cost, and OMOE in Chapter Four. 

With the response surfaces created, the designer is able to accomplish the following: 

Using the OMOE and cost response surface, determine the optimal OMOE 
for a specified cost. 

For each of the selected responses, the designer can efficiently examine an 
infinite number of combinations of the factors to determine the combined 
effect on the response. The response surface can aide the designer to 
determine which factors have the biggest and those that have the minimal 
impact on the response. With this information, the designer can focus his 
time and money on the key factors. 

By examining all the responses collectively, the designer can efficiently 
perform trade-off studies. This was demonstrated in Section 4.7 which 
examined the impact of the payload length on cost, submerged speed, 
submerged displacement, and OMOE. 

By setting upper and lower limits for the various responses, the designer 
can bracket his design space and determine the feasible design space. The 
designer can then instantly determine which combination of design factors 
are feasible and which are not. But more important, the designer can 
determine immediately if the imposed constraints result in a reduction of 
the design space to the point that there are no possible feasible designs. 

5.2 Future Work 

This thesis outlines a methodology to optimize a concept design given a customer 

preference (via an OMOE). The Submersible Design Program is used to generate the 

design variants, which are then used to create the response surfaces, which are then used 

to optimize the design based on the OMOE. To further improve upon this work, future 
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research involves three general categories. First, expand the Submersible Design 

Program to provide more detailed concept design and capability. Second, incorporate a 

mission analysis tool to determine the mission effectiveness of the concept design. The 

mission analysis tool can be an integral part of the Submersible Design Program or a 

separate program/simulation model. Third, determine how to apply RSM to the 

combined Submersible Design Program and the mission analysis tool, as shown in Figure 

29, resulting in an optimal solution based on customer preference and mission 

effectiveness. Specifically, the following additional work is needed: 

MathCad 
Model 

Arrangements 

Structure 

Power 

Ship Control 

Signatures 

Cost 

Expand to perform 
detailed 

Figure 29: Future Submarine Concept Design Process 
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5.2.1 Submersible Design Program 

The program provides a basic concept design, but more work is needed. 

Additional coding is required to provide more detailed calculations for the existing 

modules. Then additional modules need to be added to provide more information: 

structure analysis, detailed layout and space arrangements, ship controls and 

maneuverability, and acoustics/signatures. 

5.2.2 Mission Analysis - OMOE 

To optimize the concept design, the designer needs guidance from the customer 

regarding what an optimal solution is. In linear and non-linear programming, this is in 

the form of an objective function. For submarine design, an OMOE is required that 

captures the customer requirements. But these requirements are extensive: submerged 

speed, test depth, cost, expendable payload, quieting, search rate, probability of kill, 

probability of counter kill, etc. Therefore, a detailed study should be completed that 

defines a generic OMOE (with the weighting specified by the designer) that can measure 

the performance and mission effectiveness of the submarine. And just as important, the 

characteristics of the OMOE must be an integral part of the Submersible Design Program. 

5.2.3 Mission Analysis - Program/Simulation Model 

Another method to determine the effectiveness of the concept design is to use a 

program/simulation model already developed. The U.S. Navy has numerous programs 

and simulation analysis tools for submarine designs. For example, SIM II is used by the 

Naval Undersea Warfare Center, Newport, Rhode Island, to investigate submarine 
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Sensors, weapons, platform characteristics, communications, countermeasures, and 

tactics. A study should be completed to determine if it is possible to connect the 

Submersible Design Program output to one of the mission analysis simulation/programs. 

5.2.4 Design of Experiments/Response Surface Methods 

Another research area is the application of RSM to the overall concept design 

process. This thesis applies RSM to the modular submarine model. As shown in Figure 

29, RSM could be applied to the various mission analysis tools. Therefore, research is 

needed to determine how to apply RSM to the combined Submersible Design Program 

and the mission analysis tool, resulting in an optimal solution based on customer 

preference and mission effectiveness. 
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Appendix A 

Hanson and Hunt 

Box-Behnken Design Matrix 

Pattern 
Diameter 

(ft) 

Depth 

(ft) 

Speed 
(knots) 

Payload 
Length 

(ft) 

SHP 
Cost 

($million) 
GMt(ft) 

Extra 
Volume 

(ft3) 
0000 40 800 28 65.5 28,931 1,540.3 1.10 37,500.0 
+00- 42 800 28 43 24,648 1,287.1 1.05 8,135.9 
-00+ 38 800 28 88 32,672 1,745.9 1.12 61,828.6 
0+-0 40 1100 24 65.5 19,936 1,644.8 1.10 77,949.6 
+0-0 42 800 24 65.5 18,038 1,476.8 1.08 33,725.4 
+-00 42 500 28 65.5 26,541 1,406.1 1.10 382.5 
-00 38 500 28 65.5 25,873 1,298.3 1.13 -6,113.8 
0++0 40 1100 32 65.5 49,230 2,195.7 1.12 108,333.9 
00++ 40 800 32 88 55,132 2,445.0 1.10 81,272.6 
+0+0 42 800 32 65.5 51,685 2,139.7 1.06 71,659.6 
+00+ 42 800 28 88 34,760 1,965.4 1.12 83,976.0 
-0-0 38 800 24 65.5 16,919 1,317.0 1.10 18,076.5 
0-0- 40 500 28 43 23,853 1,157.9 1.04 -16,982.9 
0000 40 800 28 65.5 28,931 1,540.3 1.10 37,500.0 
0+0+ 40 1100 28 88 39,108 2,230.8 1.10 146,695.5 
-0+0 38 800 32 65.5 47,905 1,851.5 1.07 52,888.8 
-00- 38 800 28 43 23,697 1,187.8 1.09 -1,392.1 
0-0+ 40 500 28 88 29,822 1,593.6 1.12 19,173.2 
-+00 38 1100 28 65.5 32,318 1,728.8 1.08 84,775.9 
0-+0 40 500 32 65.5 41,323 1,549.5 1.06 8,556.9 
00-+ 40 800 24 88 20,424 1,689.8 1.13 58;071.4 
00- 40 800 24 43 14,658 1,109.7 1.11 -3,447.3 
00+- 40 800 32 43 38,756 1,431.3 1.07 19,494.6 
0-0 40 500 24 65.5 16,203 1,242.2 1.11 -7,476.0 
++00 42 1100 28 65.5 34,113 1,925.1 1.09 108,475.2 
0000 40 800 28 65.5 28,931 1,540.3 1.10 37,500.0 
0+0- 40 1100 28 43 27,371 1,444.4 1.11 46,883.8 
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Appendix B 

Cost Screening Experiment - 

Full Factorial Design Matrix 

Pattern Depth 
(ft) 

Payload 
Length (ft) 

SHP Diameter 
(ft) 

Cost ($millions) 

-++- 700 85 50,000 38 2,046.3 
—+ 700 65 20,000 42 1,436.8 
+—+ 1100 65 20,000 42 1,725.7 
+-++ 1100 65 50,000 42 2,353.1 
—++ 700 65 50,000 42 1,987.8 
++— 1100 85 20,000 38 1,800.3 
++-+ 1100 85 20,000 42 2,019.8 
-+++ 700 85 50,000 42 2,220.7 
-+-+ 700 85 20,000 42 1,669.2 
-+— 700 85 20,000 38 1,495.1 
+-+- 1100 65 50,000 38 2,184.8 
— 700 65 20,000 38 1,303.1 
—+- 700 65 50,000 38 1,853.9 

++++ 1100 85 50,000 42 2,647.3 
+++- 1100 85 50,000 38 2,427.6 
+— 1100 65 20,000 38 1,557.5 
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Appendix C 

Cost, Submerged Displacement and LOA Response Surface 

Central Composite Design Matrix 

Pattern 
Depth 

(ft) 

Payload 
Length 

(ft) 

SHP 
Diameter 

(ft) 

Cost 
($million) 

Submerged 
Displacement 

(Itons) 
LOA  (ft) 

++++ 1100 88 50,000 42 2691.4 17,064 553.3 
-++- 700 88 50,000 38 2075.2 12,421 494.8 
+—+ 1100 65 20,000 42 1725.7 11,136 392.2 
—++ 700 65 50,000 42 1987.8 11,739 408.3 
OOaO 900 76.5 20,000 40 1627.3 10,376 397.9 
000a 900 76.5 35,000 38 1735.4 10,784 439.9 
++— 1100 88 20,000 38 1836.7 12,001 481.2 
A000 1100 76.5 35,000 40 2000.9 12,785 468.6 
-+— 700 88 20,000 38 1524.0 9,592 403.0 
00A0 900 76.5 50,000 40 2213.1 13,472 488.7 
+++- 1100 88 50,000 38 2464.0 15,412 592.0 
OaOO 900 65 35,000 40 1684.5 10,387 396.5 
+— 1100 65 20,000 38 1557.5 9,912 409.9 
+-++ 1100 65 50,000 42 2353.1 14,549 483.0 
—+ 700 65 20,000 42 1436.8 8,912 333.1 
0000 900 76.5 35,000 40 1820.7 11,398 427.9 
+-+- 1100 65 50,000 38 2184.8 13,325 520.8 
—+- 700 65 50,000 38 1853.9 10,779 438.1 
-+++ 700 88 50,000 42 2255.7 13,710 464.1 
000A 900 76.5 35,000 42 1910.6 12,045 418.1 
aOOO 700 76.5 . 35,000 40 1672.3 10,256 394.4 
++-+ 1100 88 20,000 42 2063.8 13,652 462.6 
0000 900 76.5 35,000 40 1820.7 11,398 427.9 
— 700 65 20,000 38 1303.1 7,954 346.3 
-+-+ 700 88 20,000 42 1704.2 10,879 388.9 
OAOO 900 88 35,000 40 1957.1 12,409 459.3 
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Appendix D 

Submerged Speed Screening Experiment - 

Fractional Factorial (Resolution IV) Design Matrix 

Pattern 
D 

(ft) 
TD(ft) SHP PL 

(ft) 
Entrance Run 

Sail 
Area 
(ft2) 

Appendage 
Area (ft) 

PC 
Submerged 

Speed 
(knots) 

+++-+—+- 42 1100 50,000 65 3.5 1.75 285 3,500 0.79 30.05 
++-++-+— 42 1100 45,000 85 3.5 1.75 575 2,000 0.79 28.84 
-+—+++++ 38 1100 45,000 65 3.5 4 575 3,500 0.85 30.36 
-+-++—+- 38 1100 45,000 85 3.5 1.75 285 3,500 0.79 28.63 
—++-+-+ 38 700 45,000 85 3.5 1.75 575 2,000 0.85 31.50 
++—++—+ 42 1100 45,000 65 3.5 4 285 2,000 0.85 31.11 
-++—+-+- 38 1100 50,000 65 1.75 4 285 3,500 0.79 30.20 
-++-+-+— 38 1100 50,000 65 3.5 1.75 575 2,000 0.79 30.65 
—++++++- 38 700 50,000 85 3.5 4 575 3,500 0.79 30.70 
__+_+__++ 38 700 50,000 65 3.5 1.75 285 3,500 0.85 32.52 
+++—++— 42 1100 50,000 65 1.75 4 575 2,000 0.79 30.61 
+.+__+_++ 42 700 50,000 65 1.75 4 285 3,500 0.85 32.47 
+-++++— 42 700 50,000 85 3.5 4 285 2,000 0.79 31.41 
+.++—++_ 42 700 50,000 85 1.75 1.75 575 3,500 0.79 30.34 
__+__++_+ 38 700 50,000 65 1.75 4 575 2,000 0.85 33.21 
.+_+_++__ 38 1100 45,000 85 1.75 4 575 2,000 0.79 29.12 

+++++++++ 42 1100 50,000 85 3.5 4 575 3,500 0.85 29.73 
++-+.+-+- 42 1100 45,000 85 1.75 4 285 3,500 0.79 28.45 
+  42 700 45,000 65 1.75 1.75 285 2,000 0.79 31.71 
+—++++. 42 700 45,000 65 3.5 4 575 3,500 0.79 30.98 
 ++_ 38 700 45,000 65 1.75 1.75 575 3,500 0.79 30.90 
++—+++ 42 1100 45,000 65 1.75 1.75 575 3,500 0.85 30.02 
+—+_++_+ 42 700 45,000 85 1.75 4 575 2,000 0.85 31.30 
—+-+.++ 38 700 45,000 85 1.75 4 285 3,500 0.85 30.97 
-+++++—+ 38 1100 50,000 85 3.5 4 285 2,000 0.85 30.62 
+_.++__++ 42 700 45,000 85 3.5 1.75 285 3,500 0.85 30.68 
+_+_+_+_+ 42 700 50,000 65 3.5 1.75 575 2,000 0.85 33.02 
-+++—+++ 38 1100 50,000 85 1.75 1.75 .575 3,500 0.85 29.75 
.+ + 38 1100 45,000 65 1.75 1.75 285 2,000 0.85 31.03 
++++—+ 42 1100 50,000 85 1.75 1.75 285 2,000 0.85 30.25 
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Appendix E 

Submerged Speed Response Surface 

Central Composite Design Matrix 

Pattern 
Test 
Depth 

(ft) 

Payload 
Length 

(ft) 

PC SHP 
Submerged 

Speed 
(knots) 

-++- 700 88 0.85 20,000 24.42 
—+ 700 65 0.79 50,000 31.91 
+-+ 1100 65 0.79 50,000 30.10 
+-++ 1100 65 0.85 50,000 30.87 
—++ 700 65 0.85 50,000 32.73 
0000 900 76.5 0.82 35,000 28.45 
++— 1100 88 0.79 20,000 22.41 
++-+ 1100 88 0.79 50,000 28.78 
-+++ 700 88 0.85 50,000 31.35 
-+-+ 700 88 0.79 50,000 30.57 
00a0 900 76.5 0.79 35,000 28.08 
000A 900 76.5 0.82 50,000 30.73 
000a 900 76.5 0.82 20,000 24.06 
-+-- 700 88 0.79 20,000 23.81 
+-+- 1100 65 0.85 20,000 24.31 
aOOO 700 76.5 0.82 35,000 29.27 
A000 1100 76.5 0.82 35,000 27.57 
— 700 65 0.79 20,000 25.14 
0000 900 76.5 0.82 35,000 28.45 
OaOO 900 65 0.82 35,000 29.21 
—+- 700 • 65 0.85 20,000 25.78 
++++ 1100 88 0.85 50,000 29.52 
OAOO 900 88 0.82 35,000 27.76 
00A0 900 76.5 0.85 35,000 28.80 
+++- 1100 88 0.85 20,000 22.98 
+— 1100 65 0.79 20,000 23.71 
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